
pgchem::tigress – A chemoinformatics extension

for PostgreSQL: User Guide

Ernst-Georg Schmid

v.1.1 GiST – Winter 2009

1

Contents

I Caveat 3

II Introduction to pgchem::tigress 3

1 Overview 3

2 Why PostgreSQL? 3

III Designing your schema 3

3 The molecules table 4

4 The functional groups table 4

IV Working with data 5

5 Molecule searching 5

6 Other molecule functions 6

7 Calculating properties 6

8 Conversions 7

9 Manipulation 7

10 The Lipinsky filter 8

11 Helper functions 8

V Miscellaneous 8

12 Rejecting duplicate molecules 8

13 Tuning 8

14 Security 10

15 Limitations 10

16 Links & Things 10

A The checkmol/matchmol molecular keys format 10

B The operators 10

2

Part I

Caveat
pgchem::tigress may contain errors in functionality and code. Therefore it
should not be used unconsiderately and does not replace the advice of a trained
chemist. Notably, pgchem::tigress was not designed to be used in GxP environ-
ments, for material safety systems and other safety critical environments.

Part II

Introduction to pgchem::tigress

1 Overview

pgchem::tigress is a chemoinformatics extension to the PostgreSQL object-relational
database management system. It enables PostgreSQL to handle chemical datatypes.
Pgchem::tigress is basically a wrapper around the checkmol/matchmol molec-
ular analyzer and the OpenBabel computational chemistry package, plus some
database functions, datatypes, a GiST index and auxiliary tables to access their
functionality purely through SQL statements.

Pgchem::tigress supports exact and substructure searching on molecules,
searching by functional groups, calculation of chemical properties like molec-
ular formula and molecular weight and Tanimoto similarity searching.

pgchem::tigress is c© Ernst-Georg Schmid, except parts that are marked as
c© Bayer Business Services GmbH, Department of Science & Technology, who
sponsored parts of the project, and released under the lesser GNU Public License
2.1. As of version 8.x of PostgreSQL, pgchem::tigress compiles and runs natively
(at least) on Linux, Solaris, OS X and Win32.

2 Why PostgreSQL?

Because it is tried and tested, suitable for heavy-duty applications and has a
clean interface for custom extensions. So far it has proven to be a good choice,
but there are no reasons why there should not be a fbchem::tigress for Firebird
or an orachem::tigress for Oracle in the future. Actually, mychem for MySQL
has started at http://sourceforge.net/projects/mychem/.

Part III

Designing your schema
As of version 1.0 GiST, pgchem::tigress does not impose limits to your database
design anymore. You can have as many molecules columns in as many tables

3

CREATE TABLE <moleculetable>
(
<key> <type> NOT NULL,
<moleculecolumn> molecule NOT NULL,
CONSTRAINT pk_molecules PRIMARY KEY (<key>)

)

Figure 1: A basic molecules table

CREATE INDEX <indexname> ON <moleculetable>
USING GIST(<moleculecolumn>)

Figure 2: Creating the GiST index

as you need and have individual molecular indexes on each1.

3 The molecules table

The molecules table holds the molecules itself, but can be extended to store
whatever additional information should be attached to those molecules. It con-
sists of at least two columns, as shown in Figure 1.

The actual name of the molecule column is unimportant for pgchem::tigress,
choose it to your liking, but it has to be of type molecule. After the table has
been created, a GiST index can be attached to the molecule column as shown
in Figure 2.

4 The functional groups table

Optional since 1.0 GiST. It contains 0..n rows per molecule. As shown in Fig-
ure 3, each row contains a code that indicates the presence of a specific functional
group in this molecule. Checkmol/matchmol currently detects 190 functional
groups, thus does pgchem::tigress. This table can be used to directly search for

1An operator overwiew that shows which operators are GiST capable can be found in
Table 4.

CREATE TABLE <molfgroupstable>
(
<key> <type> NOT NULL,
code char(8) NOT NULL,
CONSTRAINT molfgroups_pkey PRIMARY KEY (<key>, code),
CONSTRAINT fk_mol FOREIGN KEY (<key>) REFERENCES
<moleculetable> (<key>)
ON UPDATE NO ACTION ON DELETE CASCADE

)

Figure 3: The functional groups table

4

SELECT <moleculetable>.<key> FROM
<moleculetable> WHERE <querymolecule> = <moleculecolumn>;

Figure 4: Exact match

SELECT <moleculetable>.<key> FROM
<moleculetable> WHERE
<querymolecule> <= <moleculecolumn>;

Figure 5: Substructure match

molecules containing a given set of functional groups. See Part IV about how
to do this in SQL.

Part IV

Working with data
If the Schema is set up correctly, start loading your molecules table by any
means you like. The input to create a molecule is textual. The recognized
formats are shown in Table 1. How loading code has to look like for a specific

Input format Coordinates
MDL V2000 molfile yes
MDL V3000 molfile yes
SMILES no
InChI no

Table 1: The molecule input formats

programming language/database driver combination is beyond the scope of this
manual.

5 Molecule searching

Exact searching can be done by using the = operator as shown in Figure 4.
Substructure searching is done using the <= or >= operators. Figure 5 contains
an example how to perform such a search. To search for molecules containing one
or more functional groups, just select the desired functional group codes from
the functional groups table and join it with the molecules table. The example
scripts that come with pgchem::tigress contain a lookup table, containing all
known codes with their english names. This can be used to search by names
instead of codes.

Tanimoto similarity searching is done by the @ operator, which takes two
molecules and returns their Tanimoto coefficient (Figure 6).

5

SELECT <moleculetable>.<key> FROM
<moleculetable> WHERE
<querymolecule> @ <moleculecolumn>) >= 0.9

Figure 6: Similarity search

6 Other molecule functions

• SMARTSmatch(text,molecule) takes a query SMARTS, a molecule to sub-
structure match the query against. A return value of TRUE indicates a
match. This function can be used as a postprocessor to the search opera-
tors to further refine your queries.

• SMARTSmatch count(text,molecule) takes a query SMARTS, a molecule
to substructure match the query against. The integer return value indi-
cates how many unique matches were found in the target molecule. This
function can be used as a postprocessor to the search operators to further
refine your queries.

• molkeys long(molecule,bool,bool,bool) takes a query molecule and returns
its fingerprint in long form. Long means, that for every column a name/value
pair name:value; is generated. The first flag toggles strict checking of
charges, the second flag toggles strict checking of isotopes and the the
third flag toggles strict checking of radicals.

• fgroup codes(molecule) takes a query molecule and returns its functional
group codes. This can be used to obtain the codes for a functional group
search by drawn example.

7 Calculating properties

• molweight(molecule) takes a molecule and returns the standard molar mass
given by IUPAC atomic masses, including all implicit hydrogens.

• exactmass(molecule) takes a molecule and returns the the mass given by
isotopes (or most abundant isotope, if not specified), including all implicit
hydrogens .

• total charge(molecule) takes a molecule and returns the total charge (0=neu-
tral), including all implicit hydrogens.

• number of atoms(molecule) takes a molecule and returns the number of
atoms, including all implicit hydrogens.

• number of heavytoms(molecule) takes a molecule and returns the number
of heavy atoms. This also counts Deuterium an Tritium!

• number of bonds(molecule) takes a molecule and returns the number of
bonds, including all implicit hydrogens.

6

• number of rotatable bonds(molecule) takes a molecule and returns the num-
ber of rotatable bonds2.

• is chiral(molecule) takes a molecule and tries to perceive its chirality.

• is 2D(molecule) takes a molecule and returns true if 2D coordinates are
present.

• is 3D(molecule) takes a molecule and returns true if 3D coordinates are
present.

• molformula(molecule) takes a molecule and returns the molformula.

• logP(molecule) takes a molecule and returns the predicted log P value.

• MR(molecule) takes a molecule and returns the predicted molar refractiv-
ity.

• PSA(molecule) takes a molecule and returns the predicted polar surface
area.

8 Conversions

• migrate molecule(bytea) migrates a < 1.0 GiST molecule to >= 1.0 GiST.

• v3000(molecule) takes a molecule and converts it to a V3000 molfile.

• smiles(molecule,bool) takes a molecule and converts it to a SMILES string.
Parameter two controls if all isotopic or chiral markings shall be omitted.

• canonical smiles(molecule) takes a molecule and converts it to a canonical
SMILES string.

• inchi(molecule) takes a molecule and converts it to a IUPAC InChI string.

• inchikey(molecule) takes a molecule and converts it to a IUPAC InChI-key
string.

9 Manipulation

• strip salts(molecule,bool) takes a molecule and strips all atoms except for
the largest contiguous fragment. If the second parameter is true, the
charge(s) of the result are neutralized.

• add hydrogens(molecule,bool,bool) takes a molecule and adds hydrogens.
Parameter one controls if all or only polar hydrogens are added and pa-
rameter two if a correction for PH=7.4 shall be done.

• remove hydrogens(molecule,bool) takes a molecule and removes hydrogens.
Parameter two controls if all or only non-polar hydrogens (true) shall be
removed. This also removes Deuterium and Tritium.

2Any non-ring bond with hybridization of sp2 or sp3 is considered a potentially rotatable
bond. There is no special bond-typing, e.g. for amide C-N bonds with their high rotational
energy barrier.

7

10 The Lipinsky filter

The Lipinsky filter function lipinsky(molecule) checks a molecule against the
Lipinsky criteria.

Criterion match Output letter
none empty string
H donors > 5 A
molecular weight > 500 B
log P > 5.0 C
H acceptors > 10 D

Table 2: The Lipinsky function output format

The output is either a string consisting of any combination of the letters A,
B, C and D or an empty string, as shown in Table 2.

11 Helper functions

• validate cas no(varchar) takes a CAS-No. and checks its validity with the
official CAS checksum algorithm, including the 10 digit CAS-Numbers
introduced in 2008.

• is nostruct(molecule) checks if a molecule is a MDL NoStruct.

• disconnected(molecule) checks if a molecule is disconnected.

• pgchem version() returns the pgchem::tigress version identifier.

• pgchem barsoi version() returns the barsoi version identifier.

Part V

Miscellaneous

12 Rejecting duplicate molecules

In order to emulate a unique constraint on molecules, a row level INSERT and
UPDATE trigger can be used. First create a trigger function like that in Figure 7.
As the exact search in this function is dependent on the name and layout of the
specific molecules table, do not put this in the public schema. Then attach a
trigger like Figure 8 to that molecule table. Every new molecule will now be
compared to those already in the table and rejected if it is a duplicate.

13 Tuning

• Put GiST indexes on the molecule columns.

• Frequently update the statistics on the tables.

8

CREATE OR REPLACE FUNCTION example.t_is_molecule_unique()
RETURNS "trigger" AS

$BODY$
DECLARE is_not_unique bool;
BEGIN

is_not_unique:=false;

IF TG_OP=’INSERT’ OR TG_OP=’UPDATE’ THEN

is_not_unique := EXISTS (SELECT <key> FROM <moleculetable> WHERE
NEW.<moleculecolumn> = <moleculecolumn>);

IF is_not_unique THEN RAISE EXCEPTION ’MOLECULE IS NOT
UNIQUE!’; END IF;

ELSE

RAISE EXCEPTION ’PGCHEM IS-MOLECULE-UNIQUE TRIGGER CALLED
OUTSIDE INSERT OR UPDATE!’;

END IF;
RETURN NEW;
END;
$BODY$
LANGUAGE ’plpgsql’ VOLATILE;

Figure 7: The unique molecules trigger function

• Configure PostgreSQL correctly for your type and size of application.

• Query the database as precise as possible, especially for substructure
searches, e.g. avoid to search for Benzene or Naphthalene as substruc-
tures without further constraints.

• Use the LIMIT option for PostgreSQL queries if you want to limit the
number of hits returned. LIMIT kills the entire query at once when the
specified result set limit has been reached, effectively reducing the work-
load for high-yield queries. LIMIT does not work together with SELECT
COUNT.

CREATE TRIGGER is_molecule_unique
BEFORE INSERT OR UPDATE
ON <moleculetable>
FOR EACH ROW
EXECUTE PROCEDURE example.t_is_molecule_unique();

Figure 8: The unique molecules trigger

9

• Pgchem::tigress is generally a bit faster on UN*X than on Win32.

14 Security

• Whitelist-validating all data in an application on input and output is
always a good idea.

• pgchem::tigress and barsoi have be hardened against classical buffer over-
flows, but may not be immune.

15 Limitations

• MDL NoStructs are very weakly supported. Avoid them if you can. The
concept of a special non-structure is grotesque anyway when you can use
NULL.

• Disconnected structures cannot be used as query structures. However,
they can be search targets.

16 Links & Things

• checkmol/matchmol: http://merian.pch.univie.ac.at/∼nhaider/cheminf/cmmm.html

• OpenBabel: http://openbabel.sourceforge.net/

• PostgreSQL: http://www.postgresql.org/

• pgchem::tigress + barsoi: http://pgfoundry.org/projects/pgchem/

A The checkmol/matchmol molecular keys for-
mat

See Table 3.

B The operators

See Table 4.

10

Field(s) Descriptor
ntoms, n bonds, n rings number of atoms, bonds, rings
n QA, n QB, n chg number of query atoms, query bonds, charges
n C1, n C2, n C number of sp, sp2 hybridized, and total no. of car-

bons
n CHB1p, n CHB2p, n CHB3p, n CHB4 number of C atoms with at least 1, 2, 3 hetero bonds
n O2, n O3 number of sp2 and sp3 oxygens
n N1, n N2, n N3 number of sp, sp2, and sp3 nitrogens
n S, n SeTe number of sulfur atoms and selenium/tellurium

atoms
n F, n Cl, n Br, n I number of fluorine, chlorine, bromine, iodine atoms
n P, n B number of phosphorus and boron atoms
n Met, n X number of metal and ”other” atoms (not listed else-

where)
n b1, n b2, n b3, n bar number single, double, triple, and aromatic bonds
n C1O, n C2O, n CN, n XY number of C-O single bonds, C=O double bonds, CN

bonds (any type), hetero/hetero bonds
n r3, n r4, n r5, n r6, n r7, n r8 number of 3-, 4-, 5-, 6-, 7-, and 8-membered rings
n r9, n r10, n r11, n r12, n r13p number of 9-, 10-, 11-, 12-, and 13plus-membered

rings
n rN, n rN1, n rN2, n rN3p number of rings containing N (any number), 1 N, 2

N, and 3 N or more
n rO, n rO1, n rO2p number of rings containing O (any number), 1 O,

and 2 O or more
n rS, n rX, n rAr, n rBz number of rings containing S (any number), any het-

eroatom (any number), number of aromatic rings,
number of benzene rings

n br2p number of bonds belonging to more than one ring
n psg01, n psg02, n psg13, n psg14 number of atoms belonging to elements of group 1,

2, etc.
n psg15, n psg16, n psg17, n psg18 number of atoms belonging to elements of group 15,

16, etc.
n pstm, n psla number of transition metals, lanthanides/actinides
n iso, n rad number of isotopes, radicals

Table 3: The checkmol/matchmol molecular keys format, all descriptors are
integers

Operator Description GiST acceleration Return type
A <= B A contained in B yes boolean
A >= B A contains B yes boolean
A = B A equals B yes boolean
A @ B Tanimoto coefficient of A and B no double

Table 4: The available operators for the molecule datatype

11

