
E-Maj 0.9:
a PostgreSQL contrib

Ph.Beaudoin – January 2011

From the idea of logical restore to
… E-Maj

● Original idea = table_log contrib from Andreas
Scherbaum

– 1 trigger per table to log all updates into a log table

– 1 function to cancel the updates
● Development of plpgsql

functions extending the
concept to build a
solution usable on
production

E-Maj

French acronym for
« Enregistrement des Mises A Jour »,

i.e. Updates recording

Requirements

● Reliability:

– Absolute integrity of databases after « rollbacks »
– Manage all objects (tables, séquences, contraintes,...)

● Ease of use for DBAs and production people:

– Easy to understand and use
– Easy to automatize (« scriptable »)

● Performance:

– Limited overhead of the log
– Acceptable « rollback » duration

● Maintenability

● Security

Concepts

● Table_group = a set of tables and/or sequences belonging
to a unique schema or several schemas and having the
same life cycle ; it's the object on which « marks » and
« rollbacks » are applied ; it's the only object manipulated
by users

● Mark = stable point in the life of a table_group, whose
state can be set back ; is identified by a name

● Rollback = positionning of a table_group at its state when
a mark was previously set

Installation

● Preliminary operations:

– plpgsql language has to be created in the database
– a tablespace, named tspemaj, must have been

created in the cluster
● Installation done with a unique script, named emaj.sql ; to

be launched using a super-user ROLE

● The installation in a database adds :

– 1 schema (emaj) containing

– 36 plpgsql functions and

– 10 technical tables and 2 types

Initialisation

● 1) Populate emaj_group_def table to define groups and the
tables/sequences they contain

● 2) For each group :

– SELECT emaj_create_group (group);

– => creates for each application table:
● 1 trigger associated to table updates
● 1 log table into tablespace tspemaj
● 1 function to « rollback » the updates on the

application table

– A emaj_drop_group (group) function … drops a
previously created group

Main functions

● emaj_start_group (group, mark)
– Activates log triggers and set an initial mark

● emaj_set_mark_group (group, mark)
– Sets an intermediate mark

● emaj_rollback_group (group, mark)
– Rollbacks tables et sequences of the group to their state

at mark set
● emaj_stop_group (group)

– Deactivates log triggers => rollback no longer possible

A typical E-Maj sequence ...

Log tables

proc. 1 proc 2 proc 3

start_group set_mark rollback_group
stop_group

set_mark

Appl.tables

Abort
!

Possible usages

● Provides a rollback capability on batch processing without
being obliged to either pgdump/restore tables or physicaly
save and restore the entire cluster disk space

● All the more interesting as:

– tables are large with relatively limited updates

– several tables groups / databases share the same
cluster

● Can also help application tests in providing a way to
quickly rollback updates issued by a run and repeat those
tests

Marks usage strategies

● « mono-mark » usage to minimise disk space use
– repeat

● start_group (group, mark)
● processing i
● stop_group (group)

● « multi-marks » usage for more flexibility in rollbacks
– start_group (group, mark1)
– repeat

● processing i
● emaj_set_mark (group, mark i+1)

– stop_group (group)

Statistic functions

● emaj_log_stat_group (group, begin_mark, end_mark)
– Quickly provides per table statistics about the number

of rows in log tables between 2 marks or between a
mark and the current situation

● emaj_detailed_log_stat_group (group, begin_mark,
end_mark)

– Delivers statistics from log tables on updates between
2 marks, per table, per statement type (INSERT /
UPDATE / DELETE) and per ROLE that initiated
the updates

Other secondary functions (1/2)

● emaj_estimate_rollback_duration (group, mark)
– Estimate the time needed to rollback a group to a

mark
● emaj_rollback_and_stop_group (group, mark)

– Chains the calls to rollback_group et stop_group
functions - this allow to differ the rows deletion from
log tables in order to get quicker rollback

● emaj_reset_group (group)
– Purges log tables before the next emaj_start_group

call. This is a way to reclaim disk space if needed

Other secondary functions (2/2)

● emaj_delete_mark_group (group, mark)
– Suppress a mark

● emaj_rename_mark_group (group, old mark, new mark)
– Renames a mark

● emaj_force_drop_group (group)

– Force the suppression of a group (in case
emaj_drop_group function is not usable)

● emaj_verify_group (group)
– Verifies the E-Maj internal consistency of a group

Test functions

● emaj_snap_group (group, directory)
– Snaps all tables and sequences of a group on individual

files located on a directory

– Rows are ordered by primary keys

– Snap files can be diff with a reference to be sure the
log and rollback operations worked properly

Parallel rollback extension

● A php module performs parallel restore

● Acts as a client of the database

● Automaticaly spreads the group to rollback into a given
number of subgroups

● Performs the parallel rollback in a unique transaction (2PC)
(=> max_prepared_transaction >= #subgroups)

● emajParallelRollback.php -d <database> -h <host> -p
<port> -U <user> -W <password> -g <group_name> -m
<mark> -s <#subgroups>

● Other options: --help, -v, --version

● Needs php with the PostgreSQL extension

Reliability

● Many checks in particular at emaj_start_group and
emaj_rollback_group time

– Do all listed tables and sequences exists ?
– Do the triggers and log tables exist with the right columns

and types ?
– Are we sure the table stuctures have not changed between

start_group and rollback_group functions
● Exclusive lock on tables at start_group and

rollback_group time to be sure no transaction are
currently accessing the tables

● Rollback all tables et sequences in a single transaction

Security

● 2 roles that can be granted :
– emaj_adm for ... emaj administrators

– emaj_viewer to just be able to look at log tables
● E-Maj objects are only created by a super-user or a

member of emaj_adm
● No other right is granted on the emaj schema and all

related tables and functions
● Log triggers are created as « SECURITY DEFINER »

– No need to grant extra rights on application tables
● Protection against SQL injections

PhpPgAdmin plugin

● A plugin for phpPgAdmin 5 is available to help
administrator or viewer

– Shows all E-Maj objects and their attributes

– Allows all possible actions on E-Maj objects

Current limits

● PostgreSQL version : from 8.2 up to 9.0

● Every application table belonging to a group needs a
PRIMARY KEY

● Schema name length + application table name length <=
52 characters

● DDL or TRUNCATE operations cannot be managed by
E-Maj.

– TRUNCATE are just blocked when pg version > 8.3

To conclude...

● More information in the readme.txt and
releaseNotes.txt files

● Many thanks for their help to :
– Andreas Scherbaum

– Jean-Paul Argudo and Dalibo team

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

