FreeBSD st 3t A&

FreeBSD st #43tZ A&

Revision: 49503

2016-10-12 02:42:33Z by rcyu.

K #E © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014
DocEng

[R5 2 B FreeBSD SU{F51H] - ARSI ERL - HAMHEHES -

ANFENEELE : MAIFIAE T S iFreeBsD S5+ (515 : FDP)RS IHMET » I FHBIR—
ST H -~ #Ee - LIRS E -
ANFIEEFEET T - EFMEESHEE AR EE RO -

i

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this list of conditions and the following
disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other formats) must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

A THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://svnweb.freebsd.org/changeset/doc/49503

| PP ix
1. Shell FRTRFFYZ(PIOMPES) . .evvvrrneeiiiineeettiie e ettt e e ettt e e ettt e e ettt e e ettt e e ettt e e s aatn e e e astnaeeessans ix
2 T T A AR G o eeeeeine ettt ettt ettt e et e aaa ix
3.7EE ~ BT -~ EEFE ~ EE S BHEFIITIETT o vrvveeee et ix
T USSP PP PP PPPPTPOPPPIN X
O ST SPPPRPSPN 1
OO Ol o N PO PPPPTTPRPPPRT 1
1.2, FIEEBSD Tl AH vevuevnttneteiete et ettt et e ettt et e et e e e e e e e e e et e e e e e a e e a et 2
e TR ottt 3
2L B T L oot 3
22 B T T L et a s 3
O I =41 SO OPPSTPPINt 5
3.1. Documentation and Manual PAZESuueeriuiuneeriiiieeriiiineeeiiiseeeiiiseeetiineestiineeeniinneessians 5
3.2. CHOOSING @ DIFECLOTY .uevvvueeiineiiisetiieeii ettt e e tie et e e et e et e et e e et e e et e e et e e et eestasaetanessneesen 5
3.3. CHECKITIZ OUL @ COPY +uuerrrinnertiiineeetiiieeettis e e ettt e e e et e e e et s e e et e e e et s e e e et s e eaatnneeeatannes 5
3.4. Updating @ WOTKING COPY +.vvvunerrnneiiineeiietii ettt et ettt e et e et e e eie e et et e et e e et e e et esaaeesen 5
3.5. REVEIING CHANZES ©.vuveiiiiiieeiiiis ettt ettt e e e e e et e e et 6
3.6. MAKING @ Diff 1.uuiiineiiiieiiie ittt a et 6
3.7. SUDVETSION RETEIEIICES ovvvvuneeiiiineeeiiii ettt e ettt ettt ettt e et e e et e e et e e e e vt 6
4. Documentation Directory SEIUCLUIEcvuiiuiriiiniiiiiiiiiiii et 7
4.1, The TOP LeVel, BOC/ .ovviiiiieiiiiieee ettt et et e ettt e e e et s e e et s e e eaineeees 7
4.2. The 1@ng .€NCOAING / DIrCCLOTIESvvvvvuuuresiriiiiiiitiiiiiiisaiatatnsasstnssansssasssnsnsnsnnnnnnnnnnnnnnnnns 7
4.3. Document-Specific INOrMAtIONuvivuneiiieiiieeiiee et et e e et et e et e et e e ateesaeeeaines 8
5. The Documentation BUild PrOCESSueeuunieiineiiineeiiieeiie et ettt ettt et et e et e et e eaanes 11
5.1. Rendering DOCBOOK N0 OULPULevvvvvneeriiineeriiieeeeiiieeeetiie e e et e e eeiieeeeeiieeeeenineeaeninnes 11
5.2. The FreeBSD Documentation Build TOOISEEvevuneriiniiiieiiieiiieeiie e 11
5.3. Understanding Makefiles in the Documentation TTEEcc.uuuveerruuneereriineeriiiineeeiiiineeennnn 12
5.4. FreeBSD Documentation Project Make Includesouuvviriiiiiiiiiiiinnnnniiiiiiiiiiinnneeniiiiinns 13
B AT+ eeett ettt e et e e e et e et e e et 17
0. L. BRI B ettt ettt ettt ettt ettt eeeaaes 17
6.2. Building and Installing the Web Pagescccuuueeriiiineeiiiineeiiiiineeeiiiiseeeiiiiseeeiiiineeeiiiiaeeenan 17
7. XML PIIIMIET t1iiuiiiiiiniiiiiii e 21
T L B +eevvenneeeetti e ettt e ettt et e et e ettt e et e et a et s 21
7.2. Elements, Tags, and ALErDULESeevvnneeiiiiireiiiii e 22
7.3. The DOCTYPE DEClarationccvuueisunesiinesiineeiieeste e st e st e et eetteeeteeeae e st e s et esateessaaeeses 25
7.4. ESCAPING BACK £0 XML L..etiiiineeiiiii ettt ee et e et e e et e ettt e et e et e e e abi e eeaaans 27
5 T 0} 44 1<) o1 28
7.6, ENEITIES Lovvvviniiiniiiii 28
7.7. Using Entities t0 INCIUAE FIlES v..uuneviiiineiiiiiieeiii ettt a s 31
7.8. MArKEd SECLIONS ..uevviiineeiiiii ettt ettt et ettt et e et e et e ettt e e et e eeenaas 33
7.9, CONCIUSION L.evttiisesiii e ettt ettt e e et e ettt e e et e ettt e et et e e e ettt e e e ettt e e e et e e eabneeesaans 36
8. XHTML MATKUD +1vuevvvneiiineiiinetiin ettt ettt e tiiee st ettt eetieett s e et e st e e st eastnsestnseestnesstnessineessnsestnees 37
8.1, TIETOAUCLION L.evvviiiseeriiisee et e ettt s e ettt e e ettt e e e et e e e et e e e et s e e e et s e e aati s e eaatiseeaatinneaees 37
8.2. Formal PUbIic IAentifier (FPI)uvvuirninsirnineninenineninentneneenenstnsensensensensensensersensennennenns 37
8.3, SECHIONAL EIEITIETIES 1.uuevviiineeriiiseetiiie e ettt e et e et e e ettt e e e et e e e et e e e e et e eeaatinnes 37
8.4. BLOCK ELEIMEIILS ...ueeiiiiieeiiiii ettt ettt ettt ettt e et e e et e et e e e 38
8.5. TN-1INE ELEIMENES ..uiiiiiiii ettt ettt et et ettt e et e et e e et e e e 43
9. DOCBOOK MATKUD +vvvuevvinetiiisetiieeiise et e e tie et e et e et e et e et e e et e et e et e e st s e et e st e e st s e etanessaneesen 47
9.1, THETOAUCLION L.evvviiseetiii e ee et e ettt e ettt e e ettt e e e et e e e et s e e ettt s e e et s e e aati s e e ettt s eaastinseeees 47
9.2, FreeBSD EXEEINSIONS .vuvuiviiiiriiiiniiiitiiiiitiiiiiii ittt e 47
9.3. Formal PUBLic IAentifier (FPI) ...vueuuenirinieeinineeein ettt e et e e e e et e et e et e s e eeeeasanenas 49
9.4, DOCUMENT SEIUCLUIE L.viviviiiiitiiiiiiii e e s 49
9.5, BLOCK EIEIMEIILS 1.vueevviiieeiiiiieeeiiis e ettt e ettt e et e et e ettt e e ettt e e e et e e e et e e e eabnaeeeaaen 53
9.6. IN-1IN€ ELEMENLS t..uueiiiiineiiiii ettt ettt ettt e ettt e e e et e e et e eees 63

0.7 TIMAZES viviiiiiiii e 73

0.8, LIMIKS 1uivuittiintiti ettt et 76
10. SEYLE SHEELS ettt ettt e e e 79
B0 B O PP 79
L B oottt ettt 81
12 PO BIIEE oottt 85
DD 11 n'qeYe 13 o1 o) s UU P 85
12,20 B T oottt ettt ettt ettt ettt 85
12,3, JE T T E ittt 86
2, I ettt 89
125, AT Rt o e e e et ittt ettt ettt e et 89
ey ey LTS 91
12,7, B A I I ittt e 91
BT =y 2 NN 95
131 TTTBE oottt ettt ettt ettt ettt 95
13,2, GUIACRIINES +uvviviiiiiii ittt ettt ettt ettt ettt e e e e e e e 95
T T 97
34, B BT oottt 99
14, EItOr CONTIGUIALION ..evvviineriiiin ettt eeetiis e ettt e et e ettt e e et s e e et e e e e ab e e e et e e aesbneeaeaianaas 101
V45 s 101
L. 2. EITIACS uvteientteeenteeeenneeseensseaennseeeenseeseenssssenssssenssseensssssonssssensssssnssssssnnssssensssssnnssssnnnees 102
B T o1 s Lo I PO PP 102
15 LI 5 et e e et et ettt ettt ettt ettt ettt 103
T S T N D === o PSPPSR 103
15 757 /7000 Y/ 103
B T = 1 .Y/ | PP PP 103
15,4, DOCBOOK vttt 103
A BB oottt ettt 105
A1 DOCBOOK DOOK .vvviiiiiiie i e 105
PN T e e Yo) K= 1 o K ol K PR 106
ZE | ettt ettt 109

& B 4%

5.1. Common OUEPUL FOITALS ...euvuuiuinitiiiniititiiititiini ittt ettt e et s et e aeeasasnenanes

121 R4

#2.19) B 4%

Lo BT «vvvveeee ettt ettt ettt et
5.1. Build a Single HTML OULPUL FILE ...vvvueiriineiiieiiieiiie et ettt et e e e et e et e e e e e e e e eaiees

5.2. Build HTML-Split and PDF OUEPUL FIleS ...vuuvveniiineriiieeiii et ei e e e e s et e et e et e e e e e
6.1. Build the Full Web Site and All DOCUMENESvvvuneriineiiineiiiieeiiieeeise et et e et e e e et e e eaineeeies
6.2. Build Only the Web Site in ENlish «......ccvvviniiiiiiiiiiiiinec e
6.3. Build and Install the Web SItecouuniiiiiiiiiiiie et
7.1. Using an Element (Start and ENd TAZS)veeervvvvviuinseeeeririiiiiinsseeesesiiiiiiessseeesesvssiiissseeessssssnnnnns
7.2. Using an Element Without COTEENTuviiuneriineiiiieiiie ittt e et et ettt e et et e et e e eeaines
7.3. Elements Within EIEMeNts; €Mvuiunieirninininininineeineae ittt et ene et et tete e eas e eneesenetsenesstnsnrenens
7.4. Using an Element with an AtEriDULEuueiiiiinieiiiiineeiii ettt e i
7.5. Single Quotes AroUnd AtEFIDULESvvvueeiiiieiiieiii ettt e e e
7.6. XML GeneriC COMIMENT ...ovuvuiriunininininiininiitiniiitetiitieniieneuitetteneienetseneastetraensiienensenenniens
7.7. Erroneous XML COMIMENESuuviuiiiiniiiiiiiiiiiitiiiiiii e e aeas
7.8. Defining General ENLILIESccvvvuneeriiiineeriiiieeeeiiis e eeeiis e e ettt e e ettt e e e et e e e et e e e et s e e et e eeeaiinnes
7.9. Defining Parameter ENEIEIEScvvuuerunriiieiiieeiietiieetii et e et e et e e tieetaie e et e et e et eaeieeeaineeaanes
7.10. Using General Entities to INClUde Filesuveiviiinieiiiiineeiiiiis et
7.11. Using Parameter Entities to Include Filesvvriiiiiiniiiiiniiiiiiineiieeie et
7.12. Structure of @ Marked SECHIONuvvvriiinieiiiin ettt ettt
7.13. Using @ CDATA Marked SECHIONueeeeririiiiiiieseeeeisiiiiiiess s e e e e ettt e e e e e e e vttt s e e e e e eaaatttnaeaeas
7.14. Using INCLUDE and IGNORE in Marked SECtiONSuuuuueeeeerrriiiiiiiseeeeereriiiiiiisseeeesessnninnnns
7.15. Using a Parameter Entity to Control a Marked SECtionceeeuuveiiiiiiiineiiineiiiieeiiieeeieeeiieeii
8.1. Normal XHTML DOCUIMENE SEPUCEULE ...evvvvvrriiiineeeiiiiriiiiineeeeeiieniiiiinseeeeeteennniiisneeeeseennniiieeeens
8.2. N1, h2, and Other HEader Tagsccceeveeeeeieeeeeieeeieieieeeeeieieeeeeeeeeeees e s e e e e eeeeeeeeeeeeeeeeeeeeeesesseeesenenens
T oI o 2V 1) o) LU
8.4. DLOCKQUOTE EXAMPIEoiiiiiiiiiiiee ettt
8.5. UL and O EXAMPLE ...ceiiiiiiiiiieeeeee et e et e e ettt e e e e ettt e e e e e e e eaeeaaaaaas
8.6. Definition Lists With ALuiiiiiiiiiiiiiiiii it
8.7. P EXAMPIE 1uuuevvneiiineiii ettt eetie et e et et ettt e et e et e ettt e et e et e et e e st e e et e et e et e et e e et eias
8.8. Simple Use of £ADLE L.uveiiiiiii e
ES IR B U] oV 011157 T | N
8.10. USING COLSPAN ..uviiiiiiiiiiiiee e e e e e ettt e e ettt et e e e e e e ettt e e e e e et ettt e e e e e e e aesstt e aaaaaaaesnes
8.11. Using rowspan and COLSPAN TOZEtherc.uuvuuiieeeeeiiiiiiiiieeeeee et eeee e e e e e e e e e eaaaaaans
8.12. €M and STIONG EXAMPIE e.uueiiniiiieeiiieeie ettt et ettt e et e et e e et e eaieeeins
8.13. T EXAMPLE ..vvineiiiee e
8.14. Using <@ NIe = L L > e
8.15. Creating 8N ANCHOT ..uuviiniiiieiiie ettt ettt ettt e e e et e et e et e et te e et e e s e e et e eeaaeeeses
8.16. Linking to a Named Part of a Different DOCUMENEuueeririineeriiiineeeiiiineeeiiieeeeiinseeeiiineeeeniinnes
8.17. Linking to a Named Part of the Same DOCUMENLcvvuvevinneiiineriineeiineeeiineeiieeiieeeiieeeiieeeiineesineenins
9.1. Boilerplate BOOK with INTOcccoiiiiiiiiiiiii et e,
9.2. Boilerplate @article with INTOoooiiiiiiiiii e,
9.3. A SIMPLE CRAPEET 11vvuiiiieiiieesiie et et e e e e e et ettt e e et e et e ettt ettt e et e et eeeaee et essaneasaneees
9.4, EMPLY CHAPLETS L.uiiiieiiieiii ettt ettt ettt et et e e et e et e et e et e e et e et e eaanes
9.5. SECHIONS T11 CHAPLETS 11uuivviieiiiieeiiee it e ettt e et et e et e e e et e ettt e et e et e et te et e e et e e aaneesens
9.6. PATA EXAIMPLE ..evteeiiieeiii ettt et ettt ettt et ettt et et et e et e eaeeaas
9.7. DLOCKQUOTE EXAMPIE vevvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieivitt vttt avasaaaaae,
9.8. Tip and IMPOrTaANT EXAMPIeovvvvneieieiiiiiiiiiiee e ettt
9.9, EXAMPLE SOUICE vvvvvvenneeeeeiitiiiiiieeeeeee ettt e e e e e e e ettt e e e e e e ettt e e e e e et et ee e e e e e e e aat e eeeas
9.10. Rendered EXAMPLEcooiiiiiiiiiiie e et e et
9.11. itemizedlist and orderedliSt EXamplecooviriiiiiiiieiiiiiiiiiiiiieeeeeeeeeiciee e,
9.12. VAriableliSt EXAmPIecceeeiiiiiiiiiiiiei e et e e ettt e e e e e e e eaeaaaan
9.13. PrOCEAUIE EXAMPLE 1evvvvvuvnnnieeeiititiiiieeeeeeeetetite e e e e e e e et e attee et e e e e eeata e ae e e e e e et vasttaeeeeaeasasanes
9.14. ProgramliSTing EXAMPIEuuuuuuuuuummmininiiniinieiinunnnnnntnnnnnenensnenseeeensnenesensnenesenssenesennsnnes
9.15. CO and CALLOUTTIST EXaMPle ...cccvvvviiiiieiee et
9.16. INTOrMaltable EXampPlecccciviiiiiiiieiee et e ettt e e e e e et e e e e aaaaaans

9.17. Table with frame="NoNe" EXampleccceeeeriiiiiiiiiiiieeeeeieicce et e e e 61
9.18. screen, prompt, and USErinpUt EXamplecooviiiireeeiiiiiiiiiiiieeee e e e 62
9.19. €MPNASIS EXAMPLE ..evvvviiiiisseeeiiiiiiiieee e ettt e e e e ettt e e e e e e e ettt ee e e e e e ettt e e e e e eaaaaaees 63
9.20. @CTONYM EXAIMNPLE 1evvvueeriiineeiiiiiseeeiiieeettii s e eetti e e e ettt e e e ettt s e eetii s e e eati s eeattinseeestinseeestinneeenes 63
9.21. QUOTE EXAIMPIE ..evvviineeiiiiieeiiiie ettt ettt ettt et e e e e ettt e e ettt e e ettt e e e et e e eabi e eesaan 64
9.22. Keys, Mouse Buttons, and Combinations EXAmpPlec.uueiiuneriineriiineeiineeiieeiieeiieeeiieeeiineenineas 64
9.23. Applications, Commands, and Options EXAMPLEceevuneiiineriineriinreiiineriinesiineeiieesinesiinessinessinns 65
9.24. TLLENAME EXAMPIE ..oovvvviineeeeeiiiiiee ettt e ettt e e ettt e e e et e e e e e e e eeaaaias 66
9.25. PACKAGE EXAMPIE ...covvvviiiiieeeeeiiiite et ettt e ettt et e e ettt et e e e e e e e e e 67
9.26. systemitem and Classes EXAMPLEuuueeeeeiiiiiiiiiieeeeeeiiiiiiieeeeeeeeeeeieeeeeeeeeevevieeeeeeeeeranns 68
9.27. UTL EXAIMPLE 1uvvveeieiiiiiiiiiee e e e e e ettt e e e ettt e e e e ettt e e e e e e ettt e e e e e e e e eeta e e eaeaeeeaans 69
9.28. eMail with a Hyperlink EXAMPLEuuuuuuueueunniiiiiniiiiiiiiiiiiisiiisiisiainasisassnsannansnnnannnsnnnnnnnnnnnns 69
9.29. email Without a Hyperlink EXAmPpPleccevvverrrrerreeeeeeeieeeeeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeseeeeeaeaeaeeens 70
9.30. buildtarget and varname Exampleccccovvvvvivii 70
931, LAteral EXAMPIE .oovvvviiiiieeee ettt e ettt e e e e e e e e e e e e e aa e 71
9.32, replaceable EXAMPIEcceeeeiiiiiiiiiie e e e e et e e e et e e e e e e eeeaaaaaan 71
9.33. QUIDUTEON EXample .ooovvvvieiieiiciiee e 72
9.34. errorname Example ... 72
9.35. XML :1id on Chapters and Sections EXamplec.uvuuuieeeerrriiiiiiiiieeeeeeseriiiiieeeeeeeserassiineeaeeaes 76
R T = H Y411 o) LTRSS 76
9.37. Link to a FreeBSD Documentation Web Page EXampleccceevveeeieeeiiiiiiieieeeeeeeeeeeeeeeeeeeeeee 77
9.38. 1inkK to a FreeBSD Web Page EXAMPIE ...vvvvvvvvvvriusvrnnsinsnnnssnsnsssnssssnnnsnsnnnnnsnsnsnsssnssnnssnnnnnnnnnnnnnne 78
9.39. 1ink to an External Web Page EXAMPIevvvuvvvirrrnnnsnnnsnnnnnnsnnnnnnnnsnnnnnnsnsnnnnnnnnsnnnnsnnnsnnnnnnnnnnn 78
12.1. FE T Porter T T T B B ettt 87
12,2, T PGP B B A E Bl EE o iireeiiiie et ettt ettt ettt ettt et e ettt e et eea 88
12.3. Bl 28 POTLEr T Bl T B T8 s v ernetnerneieiei ettt et e et e et e et e e e e et e e e e e e et e e e e a et e s 89
124, fF B XML FEEE oottt et ettt ettt 89
12,5, BREB TTHE T S POTter T oeneineineie ittt 91
12.6. NanoBSD X B A T B o Bl Eo oevvneeeitie ettt e ettt e e et e et ettt e et e et e e e et e e e et eeeaaas 91
12.7. Explaining-BSD S EEAEE ST UTF-8 BlEE ..oeeniiiieiiieeii ettt et e e et e et e e e et e e 92
A1 DOCBOOK DOOK ... 105
A.2. DOCBOOK @I TICLE Loiiiiiiiiiiiiiie e 106

viii

N

J

1. Shell 4% = 7 3% (Prompts)
T FBET B P IR REE root FFRTRAFYE » TEFTA B SO T b & AR R A S (prompt) » AREREEE

FVRFER IR A $ o
MRS b i
— A A %
root #
2. Z J BT R 6 %5 BE RAS
T FR Ry A R AT AR A T =
RERFE 471
§% #H Us -1 25| AR -
&4 4= . login o
waE e HEHE You have mail.

ARSI HE L EHBENEEAR -

% date +"The time is %H:%M"
The time is 09:18

H2EHR T i su(1) SRR -

il FA 3 A RN A 2 R A root A LIuEFE -

AESRE IR o {6 FI B L JRE R

TTHRSHF > ARy THSE LT MRS > A man -k #H#
R - $HOME SZFRIR5RAVS B $RFTTER °

B.EF KT s THAE S EL B EpER o

HBAEASCHRNER ~ B ~ B -

=z
=]

BIBRAELER -

@ A
EERAFEFENFE T EEEFEERENSES HAeSSFEEr g eE

@ SN
STt LT R AR A (LR (R T ST S -

http://www.FreeBSD.org/cgi/man.cgi?query=su&sektion=1&manpath=freebsd-release-ports

)

E-3
A B FOREFRIERMER o —BUH - BT BIERIER SRR EME 2

o

i

3

B FoNEEEIE - RSN fEE SRR o (LR T LR B TS
EREFREE - AR IR MR AR - Pl — R MR E I ERE. ..

Hf 1. — (R 1]
SERBOBIATIE » B 0 MRS S0 » SRS R B (BT AT e LR -

4, B4t

1F 1t B2 %t Sue Blake, Patrick Durusau, Jon Hamilton, Peter Flynn, Christopher Maden 3526 A 417 B B4R 5547
B WRRHLET 2 E B0 S R o

1. Bk

BOm 228 FreeBSD SU{3HEI(flffg FDP) o AEFF{E 5 B B AYSCIF#] FreeBSD Wni Uikt T EE » AR
HERE R+ BB -

ASCHEAG 0 T FDP RIS E LS ~ TANfERAFRACCrFL ~ THIfT A RGEA TR B R -
BOH R o B FDP i B © ME— ROl B Z0REIE ERRAYRIRE -

ANFIESR AT

* DRREA RSO B FDP FTAEE R -

© RHRPTTHISC TRAER

e

* RAEH LAPLE LA AN FreeBSD ST

1.1 Bk EF

T S FreeBSD SU{F 2 B » A —LUME (G TVEZHM o E I - 53T B FreeBSD SUIFRTEIEMFimiE o A L BIPRAL
B th & B 7EEFnetfi#bsddocs IRCHEIH - jE L8 A\] AR AR SCAAHBR R E -

1. Z¢#& textproc/docproj E{4aY port o iZ Himeta-port & % H fif 4 HEFI H f FreeBSD SUA-75 ZEAYHIE
2. {£~/d0OCZ¢#s FreeBSD {4 () A< TAERIAS (FF R % 3, TAERIAS) ©

% svn checkout https://svn.FreeBSD.org/doc/head ~/doc
3. RENTHEEL

* Word wrap 3 %701 57T °

+ Tab stops 2l o

© HAIE® \H2H LA —{# tab Bt o

FE S AR Y3 E 77 TUFI 4 # 14, Editor Configuration e
4. FEFRHE TAERIA

% svn up ~/doc
5. MWEHTEBIENUESR o ARERT EREEARE - 55 R -

4 (tag) 1 entity fy{# F 77 U RI A2 % 8, XHTML Markup il & 9, DocBook Markup. «
B5ER » BUTLU TR KR ER LA ME

% igor -R filename.xml | less -RS

(o)}
%}ﬁ

o I AR B IEBURRIERR - MR EFITIE AR T HIME - EEHITEEIF
A SRR o

7. BIEXHEEESEEHEL (buildtest) o FEARERAYSCHEH SRR IEE BT make » g split
HTML &S0 o FlinE A HTML A% 58S A £ » %7€ en_US.IS08859-1/books/
handbook/ H %47 make -

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.efnet.org/
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

FreeBSD Y /4:4H

8. BHMALMETER - AT

% cd ~/doc
% svn diff > bsdinstall .diff.txt

R E PR A o Ll s 24 A Fbsdinstall Fppraoae -

9. {HFIAYE KR Problem Report 47227 diff ¥ o ANSR(F FIATEIR » S8R (1B IF i | #HHEHE O - %
docs 4p4EF0 doc-bug ERI o AEF BRI RE R > B A 1E A0 5 0 1t A A A B O EE RO ER o
{ifi F[Browse...] #28H 2k Bt diff 4% o

1.2. FreeBSD <t #4418

FDP & 2 JU%H FreeBSD Y 44

¢+ FERIFH ¢ (R T E LA FreeBSD & IR RAIAR 2B &R

* FAQ B W SR TE A B (w1 i 1B o W] 21| Bl AT BE & W) 2) FreeBSD AQBA R EELE 58 - (F%EAHE - L
= TRIESD %30 @ g RAE M ERS NEBRRIFHAZ -

* %% EF M (manual pages):5SChi Y R 4% manual 732 i FDP B8 E5HY » I T A& ML base system
Fby o SR » FDP A] MBHOELE S » AGRE LSRR - EERBIESBRAHTT -

* A3 38 2 FreeBSD {48, b AL BT » frft http://www.FreeBSD.org/ LUK #F % H fit mirror ¥ o JE4H Y,
FEAT 2 N5 — UK FreeBSD [y

BREM e B RER N FIAE R AR RRES o 4 LT B AR B

FreeBSD &yl ~ fiff I T ~ I FAQ RySLFIRIATE AT LA7E https://svn.FreeBSD.org/doc/ fyscftE
g -

4 TGS RIZTE https://svn.FreeBSD.org/base/ fJs e o LURLAS ©

SRS AUE R LA svn log %%&- #RIALSMGHERFENIp://lists. FreeBSD.org/
mailman/listinfo/svn-doc-all

B LB AR B4 B AR (7 i https://svnweb.FreeBSD.org/doc/ Fi https://svnweb.FreeBSD.org/base/ o

1% N 55 FreeBSD R/ EE how-to SUFE » HLE{RAFAE FDP YRR o HAh— LR 1EE R E
JE R BE - FDP 8 5 7 g LSO R AEAS o

http://www.FreeBSD.org/support.html#gnats
http://www.freebsd.org/index.html
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all
https://svnweb.FreeBSD.org/doc/
https://svnweb.FreeBSD.org/base/

52 . TH

A L8 T HLECHS AR E BE FreeBSD SUIF » S At B0 Al AN] g HE AR 3 o 7 LERILEAE B8 A 3% N R HTH #E 7]
ZHI— R o T HERRIE LN (B2 T ZREGERSET U RIELE -

2.1, LpF T B

1/ Ports Collection %22 textproc/docproj o 5Z{[4545 port (meta-port) & %225 i ¥ FreeBSD Y BRI TG
JERIFES o DURFI R E T A i — A -

2.1.1. DTDs iz Entities

FreeBSD {4 F 44 ff (4 4E AU EF% (DTDs) Eil XML entities 41 o ;526 & 4Ky textproc/docproj port 3%
%iz °

XHTML DTD (textproc/xhtml)
XHTML & 2Bk & A —TEARACAE 5 o 2221 FreeBSD 4Huf fr {5 F HUA% =X o

DocBook DTD (textproc/docbook-xml)
DocBook 7t AR S EH A U HIIRRD#E 5 ARUA o FreeBSD U452 2 DocBook ZE##25] o

ISO 8879 entities (textproc/is08879)
TE 18O 8879:1986 7 i) entity #f#T% DTID fr K2 A - G TEEMSE ~ 1 T FHMHE (REESE
HIFF IR A2 LA R A IRAT 9% o

2.2, #Hph T B
A—E R4 T IR AT » (HR » HA R o T B -

2.2.1. 35

Vim (editors/vim)

— AR ZEOE R SriEas - 7] UREE XML AR A AT AR R SO » 5140 DocBook XML

Emacs 8 XEmacs (editors/emacs g editors/xemacs)
T2 P {18 4w s AT S R B A U AR A XML DTD AR AU o SEEERE A A S 2RI TF & » dfAT
VBT R SRR A B 4 o

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/xhtml/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docbook-xml/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/iso8879/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/vim/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/emacs/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/xemacs/pkg-descr

= 3. T4 a| Kk

The working copy is a copy of the FreeBSD repository documentation tree downloaded onto the local computer.
Changes are made to the local working copy, tested, and then submitted as patches to be committed to the main
repository.

A full copy of the documentation tree can occupy 700 megabytes of disk space. Allow for a full gigabyte of space to
have room for temporary files and test versions of various output formats.

Subversion is used to manage the FreeBSD documentation files. It is installed by textproc/docproj as one of the
required applications.

3.1. Documentation and Manual Pages

FreeBSD documentation is not just books and articles. Manual pages for all the commands and configuration files
are also part of the documentation, and part of the FDP's territory. Two repositories are involved: d0C for the books
and articles, and base for the operating system and manual pages. To edit manual pages, the base repository
must be checked out separately.

Repositories may contain multiple versions of documentation and source code. New modifications are almost
always made only to the latest version, called head.

3.2. Choosing a Directory

FreeBSD documentation is traditionally stored in /usr/doc/ , and system source code with manual pages in /
usr/src/ .These directory trees are relocatable, and users may want to put the working copies in other locations
to avoid interfering with existing information in the main directories. The examples that follow use ~/doc and
~/src, both subdirectories of the user's home directory.

3.3. Checking Out a Copy

A download of a working copy from the repository is called a checkout, and done with svn checkout . This
example checks out a copy of the latest version (head) of the main documentation tree:

% svn checkout https://svn.FreeBSD.org/doc/head ~/doc

A checkout of the source code to work on manual pages is very similar:

% svn checkout https://svn.FreeBSD.org/base/head ~/src

3.4. Updating a Working Copy

The documents and files in the FreeBSD repository change daily. People modify files and commit changes
frequently. Even a short time after an initial checkout, there will already be differences between the local working
copy and the main FreeBSD repository. To update the local version with the changes that have been made to the
main repository, use SVN update on the directory containing the local working copy:

% svn update ~/doc

Get in the protective habit of using svn update before editing document files. Someone else may have edited
that file very recently, and the local working copy will not include the latest changes until it has been updated.

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn.html
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Reverting Changes

Editing the newest version of a file is much easier than trying to combine an older, edited local file with the newer
version from the repository.

3.5. Reverting Changes

Sometimes it turns out that changes were not necessary after all, or the writer just wants to start over. Files can
be “reset” to their unchanged form with svn revert . For example, to erase the edits made to chapter.xml
and reset it to unmodified form:

% svn revert chapter.xml

3.6. Making a Diff

After edits to a file or group of files are completed, the differences between the local working copy and the version
on the FreeBSD repository must be collected into a single file for submission. These diff files are produced by
redirecting the output of svn diff into afile:

% cd ~/doc
% svn diff > doc-fix-spelling.diff

Give the file a meaningful name that identifies the contents. The example above is for spelling fixes to the whole
documentation tree.

If the diff file is to be submitted with the web “Submit a FreeBSD problem report” interface, add a . tXt extension
to give the earnest and simple-minded web form a clue that the contents are plain text.

Be careful: svn diff includes all changes made in the current directory and any subdirectories. If there are
files in the working copy with edits that are not ready to be submitted yet, provide a list of only the files that are
to be included:

cd ~/doc
svn diff disks/chapter.xml printers/chapter.xml > disks-printers.diff

%
%

3.7. Subversion References

These examples show very basic usage of Subversion. More detail is available in the Subversion Book and the
Subversion documentation.

https://bugs.FreeBSD.org/bugzilla/enter_bug.cgi
http://svnbook.red-bean.com/
http://subversion.apache.org/docs/

= 4. Documentation Directory
Structure

Files and directories in the doC/ tree follow a structure meant to:
1. Make it easy to automate converting the document to other formats.

2. Promote consistency between the different documentation organizations, to make it easier to switch between
working on different documents.

3. Make it easy to decide where in the tree new documentation should be placed.

In addition, the documentation tree must accommodate documents in many different languages and encodings. It
is important that the documentation tree structure does not enforce any particular defaults or cultural preferences.

4.1. The Top Level, doc/

There are two types of directory under doc/, each with very specific directory names and meanings.

Directory Usage

share Contains files that are not specific to the various
translations and encodings of the documentation.
Contains subdirectories to further categorize the
information. For example, the files that comprise the
make(1) infrastructure are in share/mk, while the
additional XML support files (such as the FreeBSD
extended DocBook DTD) are in Share/xml .

lang .encoding One directory exists for each available translation
and encoding of the documentation, for example
en_US.IS08859-1/ and zh TW.UTF-8/ . The
names are long, but by fully specifying the language
and encoding we prevent any future headaches when a
translation team wants to provide documentation in the
same language but in more than one encoding. This also
avoids problems that might be caused by a future switch
to Unicode.

4.2. The 1ang .encoding / Directories

These directories contain the documents themselves. The documentation is split into up to three more categories
at this level, indicated by the different directory names.

Directory Usage

articles Documentation marked up as a DocBook article
(or equivalent). Reasonably short, and broken up into
sections. Normally only available as one XHTML file.

books Documentation marked up as a DocBook book (or
equivalent). Book length, and broken up into chapters.
Normally available as both one large XHTML file (for
people with fast connections, or who want to print it

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

Document-Specific Information

Directory Usage

easily from a browser) and as a collection of linked,
smaller files.

man For translations of the system manual pages. This
directory will contain one or more mann directories,
corresponding to the sections that have been translated.

Not every lang .encoding directory will have all of these subdirectories. It depends on how much translation
has been accomplished by that translation team.

4.3. Document-Specific Information

This section contains specific notes about particular documents managed by the FDP.

4.3.1. The Handbook
books/handbook/

The Handbook is written in DocBook XML using the FreeBSD DocBook extended DTD.

The Handbook is organized as a DocBook b0OK. The book is divided into parts, each of which contains several
chapters. chapters are further subdivided into sections (sectl) and subsections (sect2, sect3) and so
on.

4.3.1.1. Physical Organization

There are a number of files and directories within the handbook directory.

MRV
TR
The Handbook's organization may change over time, and this document may lag in detailing
the organizational changes. Post questions about Handbook organization to the FreeBSD
documentation project mailing list.

4.3.1.1.1. Makefile

The Makefile defines some variables that affect how the XML source is converted to other formats, and lists
the various source files that make up the Handbook. It then includes the standard doc.project.mk , to bring
in the rest of the code that handles converting documents from one format to another.

4.3.1.1.2. book . xml

This is the top level document in the Handbook. It contains the Handbook's DOCTYPE declaration, as well as the
elements that describe the Handbook's structure.

book.xml uses parameter entities to load in the files with the . ent extension. These files (described later) then
define general entities that are used throughout the rest of the Handbook.

4.3.1.1.3. directory /chapter.xml

Each chapter in the Handbook is stored in a file called chapter.xml in a separate directory from the other
chapters. Each directory is named after the value of the 1d attribute on the chapter element.

For example, if one of the chapter files contains:

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

4. Documentation Directory Structure

<chapter id="kernelconfig">
ékhhapter>

Then it will be called chapter.xml inthe kernelconfig directory. In general, the entire contents of the
chapter are in this one file,

When the XHTML version of the Handbook is produced, this will yield kernelconfig.html . This is because
of the 1d value, and is not related to the name of the directory.

In earlier versions of the Handbook, the files were stored in the same directory as book . xml , and named after
the value of the id attribute on the file's chapter element. Now, it is possible to include images in each chapter.
Images for each Handbook chapter are stored within share/images/books/handbook . The localized
version of these images should be placed in the same directory as the XML sources for each chapter. Namespace
collisions are inevitable, and it is easier to work with several directories with a few files in them than it is to work
with one directory that has many files in it.

A brief look will show that there are many directories with individual chapter.xml files, including basics/
chapter.xml, introduction/chapter.xml ,and printing/chapter.xml .

B

A Do not name chapters or directories after their ordering within the Handbook. This ordering
can change as the content within the Handbook is reorganized. Reorganization should be
possible without renaming files, unless entire chapters are being promoted or demoted
within the hierarchy.

The chapter.xml files are not complete XML documents that can be built individually. They can only be built
as parts of the whole Handbook.

= 5. The Documentation Build
Process

This chapter covers organization of the documentation build process and how make(1) is used to control it.

5.1. Rendering DocBook into Output

Different types of output can be produced from a single DocBook source file. The type of output desired is set with
the FORMATS variable. A list of known formats is stored in KNOWN _FORMATS :

% cd ~/doc/en_US.IS08859-1/books/handbook
% make -V KNOWN_FORMATS

F#%& 5.1. Common Output Formats

FORMATS Value File Type Description

html HTML, one file A single book.html or
article.html.

html-split HTML, multiple files Multiple HTML files, one for each
chapter or section, for use on a
typical web site.

pdf PDF Portable Document Format

The default output format can vary by document, but is usually html- split . Other formats are chosen by setting
FORMATS to a specific value. Multiple output formats can be created at a single time by setting FORMATS to a

list of formats.

#ify 5.1. Build a Single HTML Output File

% cd ~/doc/en_US.IS08859-1/books/handbook
% make FORMATS=html

#if4] 5.2. Build HTML-Split and PDF Output Files

d ~/doc/en_US.IS08859-1/books/handbook
ake FORMATS="html-split pdf"

o°
S5 0

5.2. The FreeBSD Documentation Build Toolset
These are the tools used to build and install the FDP documentation.
+ The primary build tool is make(1), specifically Berkeley Make.

» Package building is handled by FreeBSD's pkg-create(8).

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=pkg-create&sektion=8&manpath=freebsd-release-ports

Understanding Makefiles in the Documentation Tree

+ gzip(1) is used to create compressed versions of the document. bzip2(1) archives are also supported. tar(1) is
used for package building.

« install(1) is used to install the documentation.

5.3. Understanding Makefiles in the Documentation Tree

There are three main types of Makefile s in the FreeBSD Documentation Project tree.
* Subdirectory Makefile s simply pass commands to those directories below them.
* Documentation Makefile s describe the documents that are produced from this directory.

+ Make includes are the glue that perform the document production, and are usually of the form doc . xxx .mkK.

5.3.1. Subdirectory Makefiles

These Makefile s usually take the form of:

SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK = en

DOC PREFIX?= ${.CURDIR}/..
.include "${DOC PREFIX}/share/mk/doc.project.mk"

The first four non-empty lines define the make(1) variables SUBDIR, COMPAT SYMLINK , and DOC_PREFIX.

The SUBDIR statement and COMPAT_SYMLINK statement show how to assign a value to a variable, overriding
any previous value.

The second SUBDIR statement shows how a value is appended to the current value of a variable. The SUBDIR
variable is now articles books .

The DOC_PREFIX assignment shows how a value is assigned to the variable, but only if it is not already defined.
This is useful if DOC_PREFIX is not where this Makefile thinks it is - the user can override this and provide
the correct value.

What does it all mean? SUBDIR mentions which subdirectories below this one the build process should pass any
work on to.

COMPAT _SYMLINK is specific to compatibility symlinks (amazingly enough) for languages to their official
encoding (doc/en would point to en_US.IS0-8859-1).

DOC_PREFIX is the path to the root of the FreeBSD Document Project tree. This is not always that easy to find,
and is also easily overridden, to allow for flexibility. . CURDIR is a make(1) builtin variable with the path to the
current directory.

The final line includes the FreeBSD Documentation Project's project-wide make(1) system file
doc.project.mk which is the glue which converts these variables into build instructions.

5.3.2. Documentation Makefiles
TheseMakefile sset make(1) variables that describe how to build the documentation contained in that directory.
Here is an example:

MAINTAINER=nik@FreeBSD.org

12

http://www.FreeBSD.org/cgi/man.cgi?query=gzip&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=bzip2&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=install&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

5. The Documentation Build Process

The MAINTAINER variable allows committers to claim ownership of a document in the FreeBSD Documentation
Project, and take responsibility for maintaining it.

DOC is the name (sans the .Xml extension) of the main document created by this directory. SRCS lists all the
individual files that make up the document. This should also include important files in which a change should
result in a rebuild.

FORMATS indicates the default formats that should be built for this document. INSTALL _COMPRESSED is the
default list of compression techniques that should be used in the document build. INSTALL _ONLY COMPRESS ,
empty by default, should be non-empty if only compressed documents are desired in the build.

The DOC_PREFIX and include statements should be familiar already.

5.4. FreeBSD Documentation Project Make Includes

make(1) includes are best explained by inspection of the code. Here are the system include files:

« doc.project.mk isthe main project include file, which includes all the following include files, as necessary.
+ doc.subdir.mk handles traversing of the document tree during the build and install processes.

+ doc.install.mk provides variables that affect ownership and installation of documents.

+ doc.docbook.mk isincluded if DOCFORMAT is docbook and DOC is set.

5.4.1. doc.project.mk

By inspection:

5.4.1.1. Variables
DOCFORMAT and MAINTAINER are assigned default values, if these are not set by the document make file.

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

doc.subdir.mk

PREFIX is the prefix under which the documentation building tools are installed. For normal package and port
installation, this is /usr/local .

PRI LANG should be set to whatever language and encoding is natural amongst users these documents are being
built for. US English is the default.

RSN
TE
PRI LANG does not affect which documents can, or even will, be built. Its main use is
creating links to commonly referenced documents into the FreeBSD documentation install
root.

5.4.1.2. Conditionals

The .if defined(DOC) line is an example of a make(1) conditional which, like in other programs, defines
behavior if some condition is true or if it is false. defined is a function which returns whether the variable given
is defined or not.

.if ${DOCFORMAT} == "docbook" ,next,tests whether the DOCFORMAT variable is "docbook" , and
in this case, includes doc.docbook.mk .

The two .endifs close the two above conditionals, marking the end of their application.

5.4.2. doc.subdir.mk

This file is too long to explain in detail. These notes describe the most important features.

5.4.2.1. Variables
+ SUBDIR is a list of subdirectories that the build process should go further down into.

« ROOT_SYMLINKS is the name of directories that should be linked to the document install root from their
actual locations, if the current language is the primary language (specified by PRI _LANG).

+ COMPAT _SYMLINK is described in the Subdirectory Makefile section.
5.4.2.2. Targets and Macros

Dependencies are described by target : dependencyl dependency2? ... tuples, where to build
target, the given dependencies must be built first.

After that descriptive tuple, instructions on how to build the target may be given, if the conversion process between
the target and its dependencies are not previously defined, or if this particular conversion is not the same as the
default conversion method.

A special dependency . USE defines the equivalent of a macro.

_SUBDIRUSE: .USE

.for entry in ${SUBDIR}

@${ECHO} "===> ${DIRPRFX}${entry}"

@(cd ${.CURDIR}/${entry} && \

${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=
${DIRPRFX}${entry}/)

.endfor

In the above, SUBDIRUSE is now a macro which will execute the given commands when it is listed as a
dependency.

14

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

5. The Documentation Build Process

What sets this macro apart from other targets? Basically, it is executed after the instructions given in the build
procedure it is listed as a dependency to, and it does not adjust . TARGET , which is the variable which contains
the name of the target currently being built.

clean: SUBDIRUSE
rm -f ${CLEANFILES}

In the above, clean will use the SUBDIRUSE macro after it has executed the instruction rm -f
${CLEANFILES} .In effect, this causes clean to go further and further down the directory tree, deleting built
files as it goes down, not on the way back up.

5.4.2.2.1. Provided Targets

« install and package both go down the directory tree calling the real versions of themselves in the
subdirectories (realinstall and realpackage respectively).

« clean removes files created by the build process (and goes down the directory tree too). Cleandir does the
same, and also removes the object directory, if any.

5.4.2.3. More on Conditionals

+ exists isanother condition function which returns true if the given file exists.
+ empty returns true if the given variable is empty.

+ target returns true if the given target does not already exist.

5.4.2.4. Looping Constructs in make (.for)

. for provides a way to repeat a set of instructions for each space-separated element in a variable. It does this by
assigning a variable to contain the current element in the list being examined.

_ SUBDIRUSE: .USE

.for entry in ${SUBDIR}

@${ECHO} "===> ${DIRPRFX}${entry}"

@(cd ${.CURDIR}/${entry} && \

${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=
${DIRPRFX}${entry}/)

.endfor

In the above, if SUBDIR is empty, no action is taken; if it has one or more elements, the instructions between . for
and .endfor would repeat for every element, with ent ry being replaced with the value of the current element.

15

& 6. 475

FreeBSD #ENfif& FreeBSD SUPFHY—ER{h o MHUGAIERERELE ORI 8% - thBihE ~/doc > fiy
en_US.IS08859-1/htdocs +Hi# o

A LIRS BB B R R A 4 - RS EIRE H 8k

e

The web build system uses make(1), and considers variables to be set when they have been
defined, even if they are empty. The examples here show the recommended ways of defining
and using these variables. Setting or defining these variables with other values or methods
might lead to unexpected surprises.

DESTDIR
DESTDIR specifies the path where the web site files are to be installed.

This variable is best set with env(1) or the user shell's method of setting environment variables, setenv for
csh(1) or export for sh(1).

ENGLISH ONLY

Default: undefined. Build and include all translations.
ENGLISH_ONLY=yes : use only the English documents and ignore all translations.

WEB ONLY
Default: undefined. Build both the web site and all the books and articles.

WEB_ONLY=yes : build or install only HTML pages from the en_US.IS08859-1/htdocs directory.
Other directories and documents, including books and articles, will be ignored.

WEB LANG

Default: undefined. Build and include all the available languages on the web site.

Set to a space-separated list of languages to be included in the build or install. The formats are the same as the
directory names in the document root directory. For example, to include the German and French documents:

WEB_LANG="de_DE.IS08859-1 fr_FR.IS08859-1"

WEB ONLY,WEB LANG, and ENGLISH ONLY are make(1) variables and can be set in /etc/make. conf ,

Makefile.inc , as environment variables on the command line, or in dot files.

6.2. Building and Installing the Web Pages

Having obtained the documentation and web site source files, the web site can be built.

An actual installation of the web site is run as the ro0t user because the permissions on the web server directory
will not allow files to be installed by an unprivileged user. For testing, it can be useful to install the files as a normal
user to a temporary directory.

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=env&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

Building and Installing the Web Pages

In these examples, the web site files are built by user j ru in their home directory, ~/doc, with a full path of /
usr/home/jru/doc .

SN
The web site build uses the INDEX from the Ports Collection and might fail if that file or /
usr/ports isnot present. The simplest approach is to install the Ports Collection.

#i5 6.1. Build the Full Web Site and All Documents
Build the web site and all documents. The resulting files are left in the document tree:

% cd ~/doc/en_US.IS08859-1/htdocs/
% make all

18

#if5 6.2. Build Only the Web Site in English
Build the web site only, in English, as user j ru, and install the resulting files into /tmp/www for testing:

cd ~/doc/en_US.IS08859-1/htdocs/
env DESTDIR=/tmp/www make ENGLISH_ONLY=yes WEB_ ONLY=yes all o
install

[
“©
[

“©

Changes to static files can usually be tested by viewing the modified files directly with a web browser. If
the site has been built as shown above, a modified main page can be viewed with:

% firefox /tmp/www/data/index.html

Modifications to dynamic files can be tested with a web server running on the local system. After building
the site as shown above, this /usr/local/etc/apache24/httpd.conf canbe used with www/
apache24:

httpd.conf for testing the FreeBSD website
Define TestRoot "/tmp/www/data"

directory for configuration files
ServerRoot "/usr/local"

Listen 80

minimum required modules

LoadModule authz core module libexec/apache24/mod authz core.so
LoadModule mime module libexec/apache24/mod mime.so

LoadModule unixd module libexec/apache24/mod unixd.so
LoadModule cgi module libexec/apache24/mod cgi.so

LoadModule dir module libexec/apache24/mod dir.so

run the webserver as user and group
User www
Group www

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports.html#ports-tree
http://www.freebsd.org/cgi/url.cgi?ports/www/apache24/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/www/apache24/pkg-descr

6. AU

Start the web server with

The web site can be viewed at http://localhost. Be aware that many links refer to the real FreeBSD site by
name, and those links will still go to the external site instead of the local test version. Fully testing the
local site will require temporarily setting DNS so www . FreeBSD.org resolves to Localhost or the
local IP address.

#if 6.3. Build and Install the Web Site

Build the web site and all documents as user j ru. Install the resulting files as root into the default
directory, /root/public_html :

19

http://localhost

Building and Installing the Web Pages

The install process does not delete any old or outdated files that existed previously in the same directory. If a new
copy of the site is built and installed every day, this command will find and delete all files that have not been
updated in three days:

find /usr/local/www -ctime 3 -delete

20

= 7. XML Primer

Most FDP documentation is written with markup languages based on XML. This chapter explains what that means,
how to read and understand the documentation source, and the XML techniques used.

Portions of this section were inspired by Mark Galassi's Get Going With DocBook.

7.

In the original days of computers, electronic text was simple. There were a few character sets like ASCII or EBCDIC,
but that was about it. Text was text, and what you saw really was what you got. No frills, no formatting, no
intelligence.

Inevitably, this was not enough. When text is in a machine-usable format, machines are expected to be able to use
and manipulate it intelligently. Authors want to indicate that certain phrases should be emphasized, or added to
a glossary, or made into hyperlinks. Filenames could be shown in a “typewriter” style font for viewing on screen,
but as “italics” when printed, or any of a myriad of other options for presentation.

It was once hoped that Artificial Intelligence (AI) would make this easy. The computer would read the document
and automatically identify key phrases, filenames, text that the reader should type in, examples, and more.
Unfortunately, real life has not happened quite like that, and computers still require assistance before they can
meaningfully process text.

More precisely, they need help identifying what is what. Consider this text:
To remove /tmp/fo0, use rm(1).
% rm /tmp/foo

It is easy to see which parts are filenames, which are commands to be typed in, which parts are references to manual
pages, and so on. But the computer processing the document cannot. For this we need markup.

“Markup” is commonly used to describe “adding value” or “increasing cost”. The term takes on both these
meanings when applied to text. Markup is additional text included in the document, distinguished from the
document's content in some way, so that programs that process the document can read the markup and use it when
making decisions about the document. Editors can hide the markup from the user, so the user is not distracted by it.

The extra information stored in the markup adds value to the document. Adding the markup to the document
must typically be done by a person—after all, if computers could recognize the text sufficiently well to add the
markup then there would be no need to add it in the first place. This increases the cost (the effort required) to
create the document.

The previous example is actually represented in this document like this:
<para>To remove <filename> /tmp/foo</filename> , use &man.rm.1l;.</para>
<screen>&prompt.user; <userinput> rm /tmp/foo</userinput> </screen>
The markup is clearly separate from the content.
Markup languages define what the markup means and how it should be interpreted.

Of course, one markup language might not be enough. A markup language for technical documentation has very
different requirements than a markup language that is intended for cookery recipes. This, in turn, would be very
different from a markup language used to describe poetry. What is really needed is a first language used to write
these other markup languages. A meta markup language.

http://www.galassi.org/mark/mydocs/docbook-intro/docbook-intro.html
http://www.FreeBSD.org/cgi/man.cgi?query=rm&sektion=1&manpath=freebsd-release-ports

Elements, Tags, and Attributes

This is exactly what the eXtensible Markup Language (XML) is. Many markup languages have been written in XML,
including the two most used by the FDP, XHTML and DocBook.

Each language definition is more properly called a grammar, vocabulary, schema or Document Type Definition
(DTD). There are various languages to specify an XML grammar, or schema.

A schema is a complete specification of all the elements that are allowed to appear, the order in which they should
appear, which elements are mandatory, which are optional, and so forth. This makes it possible to write an XML
parser which reads in both the schema and a document which claims to conform to the schema. The parser can
then confirm whether or not all the elements required by the vocabulary are in the document in the right order,
and whether there are any errors in the markup. This is normally referred to as “validating the document”.

EE=

I

@ Validation confirms that the choice of elements, their ordering, and so on, conforms to that
listed in the grammar. It does not check whether appropriate markup has been used for the
content. If all the filenames in a document were marked up as function names, the parser
would not flag this as an error (assuming, of course, that the schema defines elements for
filenames and functions, and that they are allowed to appear in the same place).

Most contributions to the Documentation Project will be content marked up in either XHTML or DocBook, rather
than alterations to the schemas. For this reason, this book will not touch on how to write a vocabulary.

7.2. Elements, Tags, and Attributes

All the vocabularies written in XML share certain characteristics. This is hardly surprising, as the philosophy
behind XML will inevitably show through. One of the most obvious manifestations of this philosophy is that of
content and elements.

Documentation, whether it is a single web page, or a lengthy book, is considered to consist of content. This content
is then divided and further subdivided into elements. The purpose of adding markup is to name and identify the
boundaries of these elements for further processing.

For example, consider a typical book. At the very top level, the book is itself an element. This “book” element
obviously contains chapters, which can be considered to be elements in their own right. Each chapter will contain
more elements, such as paragraphs, quotations, and footnotes. Each paragraph might contain further elements,
identifying content that was direct speech, or the name of a character in the story.

It may be helpful to think of this as “chunking” content. At the very top level is one chunk, the book. Look a little
deeper, and there are more chunks, the individual chapters. These are chunked further into paragraphs, footnotes,
character names, and so on.

Notice how this differentiation between different elements of the content can be made without resorting to any
XML terms. It really is surprisingly straightforward. This could be done with a highlighter pen and a printout of
the book, using different colors to indicate different chunks of content.

Of course, we do not have an electronic highlighter pen, so we need some other way of indicating which element
each piece of content belongs to. In languages written in XML (XHTML, DocBook, et al) this is done by means of tags.

A tag is used to identify where a particular element starts, and where the element ends. The tag is not part of the
element itself. Because each grammar was normally written to mark up specific types of information, each one will
recognize different elements, and will therefore have different names for the tags.

For an element called element-name the start tag will normally look like <element-name >. The
corresponding closing tag for this element is </element - name >.

22

= 7. XML Primer

#if5] 7.1. Using an Element (Start and End Tags)
XHTML has an element for indicating that the content enclosed by the element is a paragraph, called p.
<p>This is a paragraph. It starts with the start tag for
the 'p' element, and it will end with the end tag for the 'p'

element.</p>

<p>This is another paragraph. But this one is much shorter.</p>

Some elements have no content. For example, in XHTML, a horizontal line can be included in the document. For
these “empty” elements, XML introduced a shorthand form that is completely equivalent to the two-tag version:

#ify 7.2. Using an Element Without Content

XHTML has an element for indicating a horizontal rule, called hr. This element does not wrap content,
so it looks like this:

<p>0ne paragraph.</p>
<hr></hr>

<p>This is another paragraph. A horizontal rule separates this
from the previous paragraph.</p>

The shorthand version consists of a single tag:

<p>0ne paragraph.</p>
<hr/>

<p>This is another paragraph. A horizontal rule separates this
from the previous paragraph.</p>

As shown above, elements can contain other elements. In the book example earlier, the book element contained
all the chapter elements, which in turn contained all the paragraph elements, and so on.

#if4| 7.3. Elements Within Elements; em

<p>This is a simple paragraph where some
of the words have been emphasized.</p>

The grammar consists of rules that describe which elements can contain other elements, and exactly what they
can contain.

23

Elements, Tags, and Attributes

A People often confuse the terms tags and elements, and use the terms as if they were
interchangeable. They are not.

An element is a conceptual part of your document. An element has a defined start and end.
The tags mark where the element starts and ends.

When this document (or anyone else knowledgeable about XML) refers to “the <p> tag” they
mean the literal text consisting of the three characters <, p, and >. But the phrase “the p
element” refers to the whole element.

This distinction is very subtle. But keep it in mind.

Elements can have attributes. An attribute has a name and a value, and is used for adding extra information to the
element. This might be information that indicates how the content should be rendered, or might be something
that uniquely identifies that occurrence of the element, or it might be something else.

An element's attributes are written inside the start tag for that element, and take the form attribute-
name="attribute-value ".

In XHTML, the p element has an attribute called align, which suggests an alignment (justification) for the
paragraph to the program displaying the XHTML.

The align attribute can take one of four defined values, Left, center, right and justify.Iif the attribute
is not specified then the default is Left.

#if5 7.4. Using an Element with an Attribute

<p align="1left"> The inclusion of the align attribute
on this paragraph was superfluous, since the default is left.</p>

<p align="center"> This may appear in the center.</p>

Some attributes only take specific values, such as left or justify. Others allow any value.

#ify 7.5. Single Quotes Around Attributes

<p align='right'> I am on the right!</p>

Attribute values in XML must be enclosed in either single or double quotes. Double quotes are traditional. Single
quotes are useful when the attribute value contains double quotes.

Information about attributes, elements, and tags is stored in catalog files. The Documentation Project uses standard
DocBook catalogs and includes additional catalogs for FreeBSD-specific features. Paths to the catalog files are
defined in an environment variable so they can be found by the document build tools.

24

= 7. XML Primer

7.2.1.To Do...

Before running the examples in this document, install textproc/docproj from the FreeBSD Ports Collection. This is
a meta-port that downloads and installs the standard programs and supporting files needed by the Documentation
Project. csh(1) users must use rehash for the shell to recognize new programs after they have been installed, or
log out and then log back in again.

1. Create example.xml , and enter this text:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1l/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>An Example XHTML File</title>
</head>

<body>

<p>This is a paragraph containing some text.</p>
<p>This paragraph contains some more text.</p>
<p align="right"> This paragraph might be right-justified.</p>

</body>
</html>

2. Try to validate this file using an XML parser.
textproc/docproj includes the xml1lint validating parser [22].
Use xmllint to validate the document:

% xmllint --valid --noout example.xml
xmllint returns without displaying any output, showing that the document validated successfully.

3. See what happens when required elements are omitted. Delete the line with the <title> and </title>
tags, and re-run the validation.

% xmllint --valid --noout example.xml

example.xml:5: element head: validity error : Element head content does not follow o

the DTD, expecting ((script | style | meta | link | object | isindex)* , ((title , o

(script | style | meta | link | object | isindex)* , (base , (script | style | meta
| link | object | isindex)*)?) | (base , (script | style | meta | link | object | o

isindex)* , title , (script | style | meta | link | object | isindex)*))), got ()

This shows that the validation error comes from the fifth line of the example.xml file and that the
content of the <head> is the part which does not follow the rules of the XHTML grammar.

Then Xml1int shows the line where the error was found and marks the exact character position with a *
sign.

4. Replace the title element.

7.3. The DOCTYPE Declaration

The beginning of each document can specify the name of the DTD to which the document conforms. This DOCTYPE
declaration is used by XML parsers to identify the DTD and ensure that the document does conform to it.

25

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1&manpath=freebsd-release-ports
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Formal Public Identifiers (FPIs)

A typical declaration for a document written to conform with version 1.0 of the XHTML DTD looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

That line contains a number of different components.

<!
The indicator shows this is an XML declaration.

DOCTYPE
Shows that this is an XML declaration of the document type.

html

Names the first element that will appear in the document.

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
Lists the Formal Public Identifier (FPI) for the DTD to which this document conforms. The XML parser uses
this to find the correct DTD when processing this document.

PUBLIC is not a part of the FPI, but indicates to the XML processor how to find the DTD referenced in the
FPL Other ways of telling the XML parser how to find the DTD are shown later.

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd"
A local filename or a URL to find the DTD.

Ends the declaration and returns to the document.

7.3.1. Formal Public Identifiers (FPIs)

=
=]

EE
It is not necessary to know this, but it is useful background, and might help debug problems
when the XML processor can not locate the DTD.

FPIs must follow a specific syntax:
"Owner //Keyword Description //Language "

Owner
The owner of the FPI.

The beginning of the string identifies the owner of the FPI. For example, the FPI "IS0 8879:1986//
ENTITIES Greek Symbols//EN" lists ISO 8879:1986 as being the owner for the set of entities
for Greek symbols. ISO 8879:1986 is the International Organization for Standardization (ISO) number for the
SGML standard, the predecessor (and a superset) of XML.

Otherwise, this string will either look like - //Owner or +//0wner (notice the only difference is the leading
+or -).

If the string starts with - then the owner information is unregistered, with a + identifying it as registered.

I1SO 9070:1991 defines how registered names are generated. It might be derived from the number of an ISO
publication, an ISBN code, or an organization code assigned according to ISO 6523. Additionally, a registration

26

= 7. XML Primer

authority could be created in order to assign registered names. The ISO council delegated this to the American
National Standards Institute (ANSI).

Because the FreeBSD Project has not been registered, the owner string is -//FreeBSD . As seen in the
example, the W3C are not a registered owner either.

Keyword
There are several keywords that indicate the type of information in the file. Some of the most common
keywords are DTD, ELEMENT , ENTITIES, and TEXT. DTD is used only for DTD files, ELEMENT is usually
used for DTD fragments that contain only entity or element declarations. TEXT is used for XML content (text
and tags).

Description
Any description can be given for the contents of this file. This may include version numbers or any short text
that is meaningful and unique for the XML system.

Language
An ISO two-character code that identifies the native language for the file. EN is used for English.

7.3.1.1. catalog Files

With the syntax above, an XML processor needs to have some way of turning the FPI into the name of the file
containing the DTD. A catalog file (typically called catalog) contains lines that map FPIs to filenames. For
example, if the catalog file contained the line:

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "1.0/transitional.dtd"

The XML processor knows that the DTD is called transitional.dtd inthe 1.0 subdirectory of the directory
that held catalog.

Examine the contents of /usr/local/share/xml/dtd/xhtml/catalog.xml . This is the catalog file
for the XHTML DTDs that were installed as part of the textproc/docproj port.

7.3.2. Alternatives to FPIs

Instead of using an FPI to indicate the DTD to which the document conforms (and therefore, which file on the
system contains the DTD), the filename can be explicitly specified.

The syntax is slightly different:
<!DOCTYPE html SYSTEM "/path/to/file.dtd">

The SYSTEM keyword indicates that the XML processor should locate the DTD in a system specific fashion. This
typically (but not always) means the DTD will be provided as a filename.

Using FPIs is preferred for reasons of portability. If the SYSTEM identifier is used, then the DTD must be provided
and kept in the same location for everyone.

7.4. Escaping Back to XML

Some of the underlying XML syntax can be useful within documents. For example, comments can be included in
the document, and will be ignored by the parser. Comments are entered using XML syntax. Other uses for XML
syntax will be shown later.

XML sections begin with a <! tag and end with a >. These sections contain instructions for the parser rather than
elements of the document. Everything between these tags is XML syntax. The DOCTYPE declaration shown earlier
is an example of XML syntax included in the document.

27

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Comments

7.5. Comments

Comments are an XML construct, and are normally only valid inside a DTD. However, as £fj 7.4, “Escaping Back to
XML” shows, it is possible to use XML syntax within the document.

The delimiter for XML comments is the string “ - - ”. The first occurrence of this string opens a comment, and the
second closes it.

#if5| 7.6. XML Generic Comment

<!-- This is inside the comment -->
<!-- This is another comment X
<!-- This is one way

of doing multiline comments -->

<!-- This is another way of --
-- doing multiline comments -->

XHTML users may be familiar with different rules for comments. In particular, it is often believed that the string
<!-- opens a comment, and it is only closed by - ->.

This is not correct. Many web browsers have broken XHTML parsers, and will accept incorrect input as valid.
However, the XML parsers used by the Documentation Project are more strict, and will reject documents with that
error,

#if5 7.7. Erroneous XML Comments

<!-- This is in the comment --
THIS IS OUTSIDE THE COMMENT!

-- back inside the comment -->

The XML parser will treat this as though it were actually:

<!THIS IS OUTSIDE THE COMMENT>

That is not valid XML, and may give confusing error messages.

7.5.1.To Do...
1. Add some comments to example.xml , and check that the file still validates using xmllint.

2. Add some invalid comments to example.Xxml , and see the error messages that xmllint gives when it
encounters an invalid comment.

7.6. Entities

Entities are a mechanism for assigning names to chunks of content. As an XML parser processes a document, any
entities it finds are replaced by the content of the entity.

28

= 7. XML Primer

This is a good way to have re-usable, easily changeable chunks of content in XML documents. It is also the only
way to include one marked up file inside another using XML.

There are two types of entities for two different situations: general entities and parameter entities.

7.6.1. General Entities

General entities are used to assign names to reusable chunks of text. These entities can only be used in the
document. They cannot be used in an XML context.

To include the text of a general entity in the document, include &entity-name ; in the text. For example,
consider a general entity called current.version which expands to the current version number of a product.
To use it in the document, write:

<para>The current version of our product is
¤t.version;.</para>

When the version number changes, edit the definition of the general entity, replacing the value. Then reprocess
the document.

General entities can also be used to enter characters that could not otherwise be included in an XML document.
For example, < and & cannot normally appear in an XML document. The XML parser sees the < symbol as the start
of a tag. Likewise, when the & symbol is seen, the next text is expected to be an entity name.

These symbols can be included by using two predefined general entities: &Lt ; and & .

General entities can only be defined within an XML context. Such definitions are usually done immediately after
the DOCTYPE declaration.

#i {5 7.8. Defining General Entities

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd" [

<!ENTITY current.version "3.0-RELEASE">
<!ENTITY last.version "2.2.7-RELEASE">
1>

The DOCTYPE declaration has been extended by adding a square bracket at the end of the first line. The
two entities are then defined over the next two lines, the square bracket is closed, and then the DOCTYPE
declaration is closed.

The square brackets are necessary to indicate that the DTD indicated by the DOCTYPE declaration is being
extended.

7.6.2. Parameter Entities

Parameter entities, like general entities, are used to assign names to reusable chunks of text. But parameter entities
can only be used within an XML context.

Parameter entity definitions are similar to those for general entities. However, parameter entries are included with
%sentity-name ;.The definition also includes the % between the ENTITY keyword and the name of the entity.

For a mnemonic, think “Parameter entities use the Percent symbol”.

#if5 7.9. Defining Parameter Entities
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

29

To Do...

7.6.3. To Do...

1.

30

Add a general entity to example.xml .

Validate the document using xmllint.

Load example.xml into a web browser. It may have to be copied to example.html before the browser
recognizes it as an XHTML document.

Older browsers with simple parsers may not render this file as expected. The entity reference &version;
may not be replaced by the version number, or the XML context closing] > may not be recognized and instead
shown in the output.

The solution is to normalize the document with an XML normalizer. The normalizer reads valid XML and
writes equally valid XML which has been transformed in some way. One way the normalizer transforms the
input is by expanding all the entity references in the document, replacing the entities with the text that they
represent.

xmllint can be used for this. It also has an option to drop the initial DTD section so that the closing 1>
does not confuse browsers:

A normalized copy of the document with entities expanded is produced in example.html , ready to load
into a web browser.

= 7. XML Primer

7.7. Using Entities to Include Files
Both general and parameter entities are particularly useful for including one file inside another.
7.7.1. Using General Entities to Include Files

Consider some content for an XML book organized into files, one file per chapter, called chapterl.xml,
chapter2.xml , and so forth, with a book . xml that will contain these chapters.

In order to use the contents of these files as the values for entities, they are declared with the SYSTEM keyword.
This directs the XML parser to include the contents of the named file as the value of the entity.

#ify 7.10. Using General Entities to Include Files

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd" [
<!ENTITY chapter.l SYSTEM "chapterl.xml">

<!ENTITY chapter.2 SYSTEM "chapter2.xml">

<!ENTITY chapter.3 SYSTEM "chapter3.xml">

<!-- And so forth -->

1>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<!-- Use the entities to load in the chapters -->
&chapter.1;
&chapter.2;
&chapter.3;
</html>
AR H
Eas

O When using general entities to include other files within a document, the files being
included (chapterl.xml , chapter2.xml, and so on) must not start with a DOCTYPE
declaration. This is a syntax error because entities are low-level constructs and they are
resolved before any parsing happens.

7.7.2. Using Parameter Entities to Include Files

Parameter entities can only be used inside an XML context. Including a file in an XML context can be used to ensure
that general entities are reusable.

Suppose that there are many chapters in the document, and these chapters were reused in two different books,
each book organizing the chapters in a different fashion.

The entities could be listed at the top of each book, but that quickly becomes cumbersome to manage.

Instead, place the general entity definitions inside one file, and use a parameter entity to include that file within
the document.

31

To Do...

#i {5 7.11. Using Parameter Entities to Include Files

Place the entity definitions in a separate file called chapters.ent and containing this text:

Create a parameter entity to refer to the contents of the file. Then use the parameter entity to load the file
into the document, which will then make all the general entities available for use. Then use the general
entities as before:

7.7.3.To Do...

7.7.3.1. Use General Entities to Include Files

1. Create three files, paral.xml, para2.xml,and para3.xml.
Put content like this in each file:

2. Editexample.xml so that it looks like this:

32

= 7. XML Primer

3. Produce example.html by normalizing example.xml .

4. Load example.html into the web browser and confirm that the paran.xml files have been included in
example.html.

7.7.3.2. Use Parameter Entities to Include Files

FE
N
@ The previous steps must have completed before this step.

1. Editexample.xml so that it looks like this:

2. Create anew file called entities.ent with this content:

3. Produce example.html by normalizing example.xml .

4. Load example.html into the web browser and confirm that the paran.xml files have been included in
example.html .

7.8. Marked Sections

XML provides a mechanism to indicate that particular pieces of the document should be processed in a special way.
These are called “marked sections”.

33

Marked Section Keywords

#if5 7.12. Structure of a Marked Section
<! [KEYWORD [

Contents of marked section
11>

As expected of an XML construct, a marked section starts with <!,

The first square bracket begins the marked section.

KEYWORD describes how this marked section is to be processed by the parser.
The second square bracket indicates the start of the marked section's content.

The marked section is finished by closing the two square brackets, and then returning to the document context
from the XML context with >,

7.8.1. Marked Section Keywords

7.8.1.1. CDATA

These keywords denote the marked sections content model, and allow you to change it from the default.
When an XML parser is processing a document, it keeps track of the “content model”.

The content model describes the content the parser is expecting to see and what it will do with that content.
The CDATA content model is one of the most useful.

CDATA is for “Character Data”. When the parser is in this content model, it expects to see only characters. In this
model the < and & symbols lose their special status, and will be treated as ordinary characters.

A =

EE

When using CDATA in examples of text marked up in XML, remember that the content of
CDATA is not validated. The included text must be check with other means. For example, the
content could be written in another document, validated, and then pasted into the CDATA
section.

#i {51 7.13. Using a coATA Marked Section

<para>Here is an example of how to include some text that contains
many <literal><</literal> and <literal>&</literal>
symbols. The sample text is a fragment of
<acronym> XHTML</acronym> . The surrounding text (<para> and
<programlisting>) are from DocBook.</para>

<programlisting> <![CDATA[<p>This is a sample that shows some of the
elements within <acronym> XHTML</acronym> . Since the angle

34

= 7. XML Primer

brackets are used so many times, it is simpler to say the whole
example is a CDATA marked section than to use the entity names for
the left and right angle brackets throughout.</p>

This is a listitem
This is a second listitem
This is a third listitem</1i>

<p>This is the end of the example.</p>]]></programlisting>

7.8.1.2. INCLUDE and IGNORE

When the keyword is INCLUDE, then the contents of the marked section will be processed. When the keyword is
IGNORE, the marked section is ignored and will not be processed. It will not appear in the output.

#if51| 7.14. Using INCLUDE and IGNORE in Marked Sections

<! [INCLUDE[
This text will be processed and included.
11>

<! [IGNORE[
This text will not be processed or included.
11>

By itself, this is not too useful. Text to be removed from the document could be cut out, or wrapped in comments.
It becomes more useful when controlled by parameter entities, yet this usage is limited to entity files.

For example, suppose that documentation was produced in a hard-copy version and an electronic version. Some
extra text is desired in the electronic version content that was not to appear in the hard-copy.

Create an entity file that defines general entities to include each chapter and guard these definitions with a
parameter entity that can be set to either INCLUDE or IGNORE to control whether the entity is defined. After
these conditional general entity definitions, place one more definition for each general entity to set them to
an empty value. This technique makes use of the fact that entity definitions cannot be overridden but the first
definition always takes effect. So the inclusion of the chapter is controlled with the corresponding parameter entity.
Set to INCLUDE, the first general entity definition will be read and the second one will be ignored. Set to IGNORE,
the first definition will be ignored and the second one will take effect.

#ify 7.15. Using a Parameter Entity to Control a Marked Section
<!ENTITY % electronic.copy "INCLUDE">

<![%electronic.copy; [

<!ENTITY chap.preface SYSTEM "preface.xml">

11>

<!ENTITY chap.preface "">

35

To Do...

When producing the hard-copy version, change the parameter entity's definition to:

7.8.2.To Do...

1. Modify entities.ent to contain the following:

2. Normalize example.xml and notice that the conditional text is not present in the output document. Set
the parameter entity guard to INCLUDE and regenerate the normalized document and the text will appear
again. This method makes sense if there are more conditional chunks depending on the same condition. For
example, to control generating printed or online text.

7.9. Conclusion

That is the conclusion of this XML primer. For reasons of space and complexity, several things have not been covered
in depth (or at all). However, the previous sections cover enough XML to introduce the organization of the FDP
documentation.

36

= 8. XHTML Markup

8.1. Introduction
This chapter describes usage of the XHTML markup language used for the FreeBSD web site.

XHTML is the XML version of the HyperText Markup Language, the markup language of choice on the World wide
Web. More information can be found at http://www.w3.0rg/ .

XHTML is used to mark up pages on the FreeBSD web site. It is usually not used to mark up other documentation,
since DocBook offers a far richer set of elements from which to choose. Consequently, XHTML pages will normally
only be encountered when writing for the web site.

HTML has gone through a number of versions. The XML-compliant version described here is called XHTML. The
latest widespread version is XHTML 1.0, available in both strict and transitional variants.

The XHTML DTDs are available from the Ports Collection in textproc/xhtml. They are automatically installed by
the textproc/docproj port.

NETEETY
S TE
This is not an exhaustive list of elements, since that would just repeat the documentation for
XHTML. The aim is to list those elements most commonly used. Please post questions about
elements or uses not covered here to the FreeBSD documentation project mailing list.

Inline Versus Block

@ In the remainder of this document, when describing elements, inline means that the element
can occur within a block element, and does not cause a line break. A block element, by
comparison, will cause a line break (and other processing) when it is encountered.

8.2. Formal Public Identifier (FPI)

There are a number of XHTML FPIs, depending upon the version, or level of XHTML to which a document conforms.
Most XHTML documents on the FreeBSD web site comply with the transitional version of XHTML 1.0.

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

8.3. Sectional Elements

An XHTML document is normally split into two sections. The first section, called the head, contains meta-
information about the document, such as its title, the name of the author, the parent document, and so on. The
second section, the body, contains content that will be displayed to the user.

These sections are indicated with head and body elements respectively. These elements are contained within
the top-level html element.

http://www.w3.org/
http://www.freebsd.org/cgi/url.cgi?ports/textproc/xhtml/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

Block Elements

#if5 8.1. Normal XHTML Document Structure

8.4. Block Elements

8.4.1. Headings

XHTML has tags to denote headings in the document at up to six different levels.
The largest and most prominent heading is h1, then h2, continuing down to h6.

The element's content is the text of the heading.

#i {5 8.2. h1, h2, and Other Header Tags

Usage:

Generally, an XHTML page should have one first level heading (h1). This can contain many second level headings
(h2), which can in turn contain many third level headings. Do not leave gaps in the numbering,

8.4.2. Paragraphs

XHTML supports a single paragraph element, p.

38

= 8. XHTML Markup

#ifl 8.3. p Example
Usage:

<p>This is a paragraph. It can contain just about any
other element.</p>

8.4.3. Block Quotations

A block quotation is an extended quotation from another document that will appear in a separate paragraph.

#i151| 8.4. blockquote Example
Usage:

<p>A small excerpt from the US Constitution:</p>

<blockquote> We the People of the United States, in Order to form
a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and our
Posterity, do ordain and establish this Constitution for the

United States of America.</blockquote>

8.4.4. Lists
XHTML can present the user with three types of lists: ordered, unordered, and definition.

Entries in an ordered list will be numbered, while entries in an unordered list will be preceded by bullet points.
Definition lists have two sections for each entry. The first section is the term being defined, and the second section
is the definition.

Ordered lists are indicated by the 01 element, unordered lists by the Ul element, and definition lists by the d1l
element.

Ordered and unordered lists contain listitems, indicated by the 11 element. A listitem can contain textual content,
or it may be further wrapped in one or more p elements.

Definition lists contain definition terms (dt) and definition descriptions (dd). A definition term can only contain
inline elements. A definition description can contain other block elements.

#i5l 8.5. ul and ol Example
Usage:

<p>An unordered list. Listitems will probably be
preceded by bullets.</p>

First item

39

Pre-formatted Text

#i151 8.6. Definition Lists with dt

Usage:

8.4.5. Pre-formatted Text

Pre-formatted text is shown to the user exactly as it is in the file. Text is shown in a fixed font. Multiple spaces and
line breaks are shown exactly as they are in the file.

Wrap pre-formatted text in the pre element.

#3151 8.7. pre Example

For example, the pre tags could be used to mark up an email message:

40

= 8. XHTML Markup

Keep in mind that < and & still are recognized as special characters in pre-formatted text. This is why the
example shown had to use &Lt ; instead of <. For consistency, > ; was used in place of >, too. Watch out
for the special characters that may appear in text copied from a plain-text source, like an email message
or program code.

8.4.6. Tables

Mark up tabular information using the table element. A table consists of one or more table rows (tr), each
containing one or more cells of table data (td). Each cell can contain other block elements, such as paragraphs or
lists. It can also contain another table (this nesting can repeat indefinitely). If the cell only contains one paragraph
then the pelement is not needed.

#if5) 8.8. Simple Use of table

Usage:

A cell can span multiple rows and columns by adding the rowspan or colspan attributes with values for the
number of rows or columns to be spanned.

#i51 8.9. Using rowspan

Usage:

41

Tables

#i51 8.10. Using colspan

Usage:

42

#i 51 8.11. Using rowspan and colspan Together

Usage:

= 8. XHTML Markup

this row, the first <td> will occur on its
right -->

<td>Middle right cell</td>
</tr>

<tr>
<td>Bottom left cell</td>

<td>Bottom middle cell</td>
<td>Bottom right cell</td>

</tr>
</table>

8.5. In-line Elements
8.5.1. Emphasizing Information

Two levels of emphasis are available in XHTML, @ém and St rong. em is for a normal level of emphasis and st rong
indicates stronger emphasis.

em is typically rendered in italic and strong is rendered in bold. This is not always the case, and should not
be relied upon. According to best practices, web pages only hold structural and semantical information, and
stylesheets are later applied to them. Think of semantics, not formatting, when using these tags.

#{if5 8.12. em and strong Example

Usage:

<p>This has been emphasized, while
this has been strongly emphasized.</p>

8.5.2. Indicating Fixed-Pitch Text

Content that should be rendered in a fixed pitch (typewriter) typeface is tagged with tt (for “teletype”).

&5 8.13. tt Example
Usage:

<p>Many system settings are stored in
<tt>/etc</tt>.</p>

43

Links

8.5.3. Links

EE
T
Links are also inline elements.

8.5.3.1. Linking to Other Documents on the Web

A link points to the URL of a document on the web. The link is indicated with a, and the href attribute contains
the URL of the target document. The content of the element becomes the link, indicated to the user by showing
it in a different color or with an underline.

#{5 8.14. Using
Usage:

<p>More information is available at the
 &os; web site.</p>

This link always takes the user to the top of the linked document.
8.5.3.2. Linking to Specific Parts of Documents

To link to a specific point within a document, that document must include an anchor at the desired point. Anchors
are included by setting the id attribute of an element to a name. This example creates an anchor by setting the
id attribute of a p element.

#i {51 8.15. Creating an Anchor
Usage:

<p id="samplepara"> This paragraph can be referenced
in other links with the name <tt>samplepara</tt>.</p>

Links to anchors are similar to plain links, but include a # symbol and the anchor's ID at the end of the URL.

#i {5 8.16. Linking to a Named Part of a Different Document

The samplepara example is part of a document called foo.html. A link to that specific paragraph in
the document is constructed in this example.

<p>More information can be found in the
 sample paragraph of

44

= 8. XHTML Markup

<tt>foo.htmi</tt>.</p>

To link to a named anchor within the same document, omit the document's URL, and just use the # symbol followed
by the name of the anchor.

#if5 8.17. Linking to a Named Part of the Same Document
The samplepara example resides in this document. To link to it:

<p>More information can be found in the
 sample paragraph of this
document.</p>

45

= 9. DocBook Markup

9.1. Introduction

This chapter is an introduction to DocBook as it is used for FreeBSD documentation. DocBook is a large and
complex markup system, but the subset described here covers the parts that are most widely used for FreeBSD
documentation. While a moderate subset is covered, it is impossible to anticipate every situation. Please post
questions that this document does not answer to the FreeBSD documentation project mailing list.

DocBook was originally developed by Hal Computer Systems and O'Reilly & Associates to be a Document Type
Definition (DTD) for writing technical documentation ! Since 1998 it is maintained by the DocBook Technical
Committee. As such, and unlike LinuxDoc and XHTML, DocBook is very heavily oriented towards markup that
describes what something is, rather than describing how it should be presented.

The DocBook DTD is available from the Ports Collection in the textproc/docbook-xml port. It is automatically
installed as part of the textproc/docproj port.

@ Formal Versus Informal

Some elements may exist in two forms, formal and informal. Typically, the formal version
of the element will consist of a title followed by the informal version of the element. The
informal version will not have a title.

Inline Versus Block

@ In the remainder of this document, when describing elements, inline means that the element
can occur within a block element, and does not cause a line break. A block element, by
comparison, will cause a line break (and other processing) when it is encountered.

9.2. FreeBSD Extensions

The FreeBSD Documentation Project has extended the DocBook DTD with additional elements and entities. These
additions serve to make some of the markup easier or more precise.

Throughout the rest of this document, the term “DocBook” is used to mean the FreeBSD-extended DocBook DTD.

=7
=]

@ EEY
Most of these extensions are not unique to FreeBSD, it was just felt that they were useful
enhancements for this particular project. Should anyone from any of the other *nix camps
(NetBSD, OpenBSD, Linux, ...) be interested in collaborating on a standard DocBook extension
set, please contact Documentation Engineering Team <doceng@FreeBSD.org >.

!A short history can be found under http://www.oasis-open.org/docbook/intro.shtml#doe41.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docbook-xml/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
mailto:doceng@FreeBSD.org
http://www.oasis-open.org/docbook/intro.shtml#d0e41

FreeBSD Elements

9.2.1. FreeBSD Elements

The additional FreeBSD elements are not (currently) in the Ports Collection. They are stored in the FreeBSD
Subversion tree, as head/share/xml/freebsd.dtd.

FreeBSD-specific elements used in the examples below are clearly marked.

9.2.2. FreeBSD Entities

This table shows some of the most useful entities available in the FDP. For a complete list, see the *.ent files in

doc/share/xml .

FreeBSD Name Entities

&os;

FreeBSD

&os.stable;

FreeBSD-STABLE

&os.current;

FreeBSD-CURRENT

Manual Page Entities

&man.ls.1; 1s(1) Usage: &man.ls.1; 1is the
manual page for
<command>1s</command>.

&man.cp.1; cp(1) Usage: The manual page for

<command>cp</command> is
&man.cp.1l;.

&man. command . sectionnumbe

knk to command manual page in

Entities are defined for all the

section sectionnumber FreeBSD manual pages.

FreeBSD Mailing List Entities

&a.doc; FreeBSD documentation |Usage: A link to the
project mailing list &a.doc; .

&a.questions; FreeBSD general |Usage: A link to the

questions mailing list

&a.questions;.

&a. listname ;

link to Listname

Entities are defined for all the
FreeBSD mailing lists.

FreeBSD Document Link Entities

&url.books.handbook;

http://www.FreeBSD.org/
doc/en _US.IS08859-1/
books/handbook

Usage: A link to the <link

xlink:href="&url.books.handbook; /

advanced-
networking.html">Advanced
Networking</link>
chapter of the Handbook.

&url.books. bookname ;

relative path to hookname

Entities are defined for all the
FreeBSD books.

&url.articles.committers-

guide;

48

http://www.FreeBSD.org/
doc/en US.IS08859-1/

Usage: A link to the <link

xlink:href="&url.articles.committers-

http://svnweb.FreeBSD.org/doc/head/share/xml/freebsd.dtd
http://www.FreeBSD.org/cgi/man.cgi?query=ls&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=cp&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions
http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/eresources.html#eresources-mail
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/

9. DocBook Markup

articles/committers- guide;">Committer's
guide Guide</link> article.

&url.articles. articlenamer¢lative path to articlename Entities are defined for all the
FreeBSD articles.

Other Operating System Name Entities

&linux; Linux® The Linux® operating system.
&unix; UNIX® The UNIX® operating system.
&windows; Windows® The Windows® operating system.

Miscellaneous Entities

&prompt. root; # The root user prompt.

&prompt.user; % A prompt for an unprivileged user.

&postscript; PostScript® The PostScript® programming
language.

&tex; TeX The TeX typesetting language.

&xorg; Xorg The Xorg open source X Window
System.

9.3. Formal Public Identifier (FPI)

In compliance with the DocBook guidelines for writing FPIs for DocBook customizations, the FPI for the FreeBSD
extended DocBook DTD is:

PUBLIC "-//FreeBSD//DTD DocBook V4.2-Based Extension//EN"

9.4. Document Structure

DocBook allows structuring documentation in several ways. The FreeBSD Documentation Project uses two primary
types of DocBook document: the book and the article.

Books are organized into chapters. This is a mandatory requirement. There may be parts between the book
and the chapter to provide another layer of organization. For example, the Handbook is arranged in this way.

A chapter may (or may not) contain one or more sections. These are indicated with the sect1 element. If a section
contains another section then use the sect2 element, and so on, up to sect5.

Chapters and sections contain the remainder of the content.

An article is simpler than a book, and does not use chapters. Instead, the content of an article is organized into one
or more sections, using the same seCt1 (and sect2 and so on) elements that are used in books.

The nature of the document being written should be used to determine whether it is best marked up as a book or
an article. Articles are well suited to information that does not need to be broken down into several chapters, and
that is, relatively speaking, quite short, at up to 20-25 pages of content. Books are best suited to information that
can be broken up into several chapters, possibly with appendices and similar content as well.

The FreeBSD tutorials are all marked up as articles, while this document, the FAQ, and the Handbook are all marked
up as books, for example.

49

http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/
http://www.FreeBSD.org/docs.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/faq/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/index.html

Starting a Book

9.4.1. Starting a Book
The content of a book is contained within the bOOK element. As well as containing structural markup, this element
can contain elements that include additional information about the book. This is either meta-information, used

for reference purposes, or additional content used to produce a title page.

This additional information is contained within info.

#i15 9.1. Boilerplate book with info

9.4.2. Starting an Article
The content of the article is contained within the article element. As well as containing structural markup,
this element can contain elements that include additional information about the article. This is either meta-

information, used for reference purposes, or additional content used to produce a title page.

This additional information is contained within info.

50

= 9. DocBook Markup

#if51 9.2. Boilerplate article with info

9.4.3. Indicating Chapters

Use chapter to mark up your chapters. Each chapter has a mandatory title. Articles do not contain chapters,
they are reserved for books.

#if] 9.3. A Simple Chapter

51

Sections Below Chapters

A chapter cannot be empty; it must contain elements in addition to title.f youneed to include an empty chapter
then just use an empty paragraph.

#if51 9.4. Empty Chapters

9.4.4. Sections Below Chapters

In books, chapters may (but do not need to) be broken up into sections, subsections, and so on. In articles, sections
are the main structural element, and each article must contain at least one section. Use the sectn element. The
n indicates the section number, which identifies the section level.

The first sectn is sectl. You can have one or more of these in a chapter. They can contain one or more sect?2
elements, and so on, down to sect5.

&5 9.5. Sections in Chapters

52

= 9. DocBook Markup

NEWEETN

@ Ry
Section numbers are automatically generated and prepended to titles when the document is
rendered to an output format. The generated section numbers and titles from the example
above will be:

1.1. First Section

1.2. Second Section

+ 1.2.1. First Sub-Section

* 1.2.1.1. First Sub-Sub-Section

+ 1.2.2. Second Sub-Section

9.4.5. Subdividing Using part Elements

parts introduce another level of organization between book and chapter with one or more parts. This
cannot be doneinan article.

9.5. Block Elements
9.5.1. Paragraphs
DocBook supports three types of paragraphs: formalpara, para,and simpara.

Almost all paragraphs in FreeBSD documentation use para. formalpara includes a title element, and
simpara disallows some elements from within para. Stick with para.

53

Block Quotations

#if5 9.6. para Example
Usage:

<para>This is a paragraph. It can contain just about any
other element.</para>

Appearance:

This is a paragraph. It can contain just about any other element.

9.5.2. Block Quotations

A block quotation is an extended quotation from another document that should not appear within the current
paragraph. These are rarely needed.

Blockquotes can optionally contain a title and an attribution (or they can be left untitled and unattributed).

#if4i] 9.7. blockquote Example
Usage:

<para>A small excerpt from the US Constitution:</para>

<blockquote>
<title>Preamble to the Constitution of the United States</title>

<attribution> Copied from a web site somewhere</attribution>

<para>We the People of the United States, in Order to form a more
perfect Union, establish Justice, insure domestic Tranquility,
provide for the common defence, promote the general Welfare, and
secure the Blessings of Liberty to ourselves and our Posterity, do
ordain and establish this Constitution for the United States of

America.</para>
</blockquote>

Appearance:

A small excerpt from the US Constitution:

Preamble to the Constitution of the United States

We the People of the United States, in Order to form a more perfect Union, establish
Justice, insure domestic Tranquility, provide for the common defence, promote the
general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do
ordain and establish this Constitution for the United States of America.

—Copied from a web site somewhere

9.5.3. Tips, Notes, Warnings, Cautions, and Important Information

Extra information may need to be separated from the main body of the text. Typically this is “meta” information
of which the user should be aware.

54

9. DocBook Markup

Several types of admonitions are available: tip, note,warning, caution,and important.
Which admonition to choose depends on the situation. The DocBook documentation suggests:

* Note is for information that should be heeded by all readers.

+ Important is a variation on Note.

« Caution is for information regarding possible data loss or software damage.

* Warning is for information regarding possible hardware damage or injury to life or limb.

#ify1 9.8. tip and important Example
Usage:

<tip>
<para>&os; may reduce stress.</para>
</tip>

<important>
<para>Please use admonitions sparingly. Too many admonitions
are visually jarring and can have the opposite of the
intended effect.</para>
</important>

Appearance:

/2

FreeBSD may reduce stress.

A Please use admonitions sparingly. Too many admonitions are visually jarring and can have
the opposite of the intended effect.

9.5.4. 45

Examples can be shown with example.

#3151 9.9. example Source

Usage:

<example>

55

Lists and Procedures

Appearance:

#ifi 9.10. Rendered example

Empty files can be created easily:

9.5.5. Lists and Procedures

Information often needs to be presented as lists, or as a number of steps that must be carried out in order to
accomplish a particular goal.

To do this,use itemizedlist ,orderedlist ,variablelist ,or procedure.There are other types of
list elements in DocBook, but we will not cover them here.

itemizedlist and orderedlist are similar to their counterparts in HTML, Ul and 0. Each one consists
of one ormore Listitem elements,and each listitem contains one or moreblock elements. The listitem
elements are analogous to HTML's 11 tags. However, unlike HTML, they are required.

#if5] 9.11. itemizedlist and orderedlist Example

Usage:

56

= 9. DocBook Markup

Appearance:

+ This is the first itemized item.

+ This is the second itemized item.
1. This is the first ordered item.

2. This is the second ordered item.

An alternate and often useful way of presenting information is the variablelist . These are lists where each
entry has a term and a description. They are well suited for many types of descriptions, and present information
in a form that is often easier for the reader than sections and subsections.

Avariablelist hasatitle, and then pairs of term and Listitem entries.

#if5 9.12. variablelist Example

Usage:

Appearance:

Parallel
In parallel communications, groups of bits arrive at the same time over multiple communications
channels.

Serial
In serial communications, bits arrive one at a time over a single communications channel.

57

Showing File Samples

A procedure shows a series of steps, which may in turn consist of more steps or substeps. Each step
contains block elements and may include an optional title.

Sometimes, steps are not sequential, but present a choice: do this or do that, but not both. For these alternative
choices, use stepalternatives .

#if51 9.13. procedure Example

Usage:

Appearance:

1. Do this.

2. Then do this.

3. And now do this.

4. Finally, do one of these:
« Goleft.

+ Goright.

9.5.6. Showing File Samples

Fragments of a file (or perhaps a complete file) are shown by wrapping them in the programlisting element.

58

= 9. DocBook Markup

White space and line breaks within programlisting are significant. In particular, this means that the opening
tag should appear on the same line as the first line of the output, and the closing tag should appear on the same
line as the last line of the output, otherwise spurious blank lines may be included.

#i {5 9.14. programlisting Example

Usage:

Notice how the angle brackets in the #include line need to be referenced by their entities instead of
being included literally.

Appearance:

When finished, the program will look like this:

9.5.7. Callouts
A callout is a visual marker for referring to a piece of text or specific position within an example.

Callouts are marked with the CO element. Each element must have a unique 1d assigned to it. After the example,
include a calloutlist that describes each callout.

#i {51 9.15. co and calloutlist Example

59

Tables

Appearance:

When finished, the program will look like this:

1

@ Includes the standard 10 header file.
® Specifies thatmain() returnsan int.
© Theprintf() call that writeshello, world to standard output.

9.5.8. Tables

Unlike HTML, DocBook does not need tables for layout purposes, as the stylesheet handles those issues. Instead,
just use tables for marking up tabular data.

In general terms (and see the DocBook documentation for more detail) a table (which can be either formal or
informal) consists of a table element. This contains at least one tgroup element, which specifies (as an
attribute) the number of columns in this table group. Within the tablegroup there is one thead element, which
contains elements for the table headings (column headings), and one tbody which contains the body of the table.

Both tgroup and thead contain row elements, which in turn contain entry elements. Each entry element
specifies one cell in the table.

#i {51 9.16. informaltable Example

Usage:

60

= 9. DocBook Markup

Appearance:

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

Always use the pgwide attribute with a value of 1 with the informaltable element. A bug in Internet
Explorer can cause the table to render incorrectly if this is omitted.

Table borders can be suppressed by setting the f rame attribute to none inthe informaltable element. For
example, informaltable frame="none"

#ify 9.17. Table with frame="none" Example

Appearance:

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

9.5.9. Examples for the User to Follow

Examples for the user to follow are often necessary. Typically, these will consist of dialogs with the computer; the
user types in a command, the user gets a response back, the user types another command, and so on.

A number of distinct elements and entities come into play here.

61

Examples for the User to Follow

screen
Everything the user sees in this example will be on the computer screen, so the next element is Screen.

Within screen, white space is significant.

prompt,&prompt.root; and &rompt.user;
Some of the things the user will be seeing on the screen are prompts from the computer (either from the
operating system, command shell, or application). These should be marked up using prompt.

As a special case, the two shell prompts for the normal user and the root user have been provided as entities.
To indicate the user is at a shell prompt, use one of &prompt. root; and&prompt.user; asnecessary.

They do not need to be inside prompt.

are not part of the original DTD.

3 =z
E ey
&prompt.root; and &rompt.user; are FreeBSD extensions to DocBook, and

userinput
When displaying text that the user should type in, wrap itin userinput tags. It will be displayed differently

than system output text.

#if5 9.18. screen, prompt, and userinput Example
Usage:

<screen> &prompt.user; <userinput>1ls -1</userinput>
fool
foo2
foo3

&prompt.user; <userinput>1ls -1 | grep foo2</userinput>
fo02

&prompt.user; <userinput> su</userinput>
<prompt>Password: </prompt>

&prompt.root; <userinput> cat foo2</userinput>

This is the file called 'foo2'</screen>

Appearance:

% s -1

fool

foo2

foo3

% s -1 | grep foo2
foo2

% su

Password:

cat foo2

This is the file called 'foo2'

62

9. DocBook Markup

e 2
S TR
Even though we are displaying the contents of the file T002, it is not marked up as
programlisting .Reserve programlisting for showing fragments of files outside
the context of user actions.

9.6. In-line Elements
9.6.1. Emphasizing Information

To emphasize a particular word or phrase, use emphasis . This may be presented as italic, or bold, or might be
spoken differently with a text-to-speech system.

There is no way to change the presentation of the emphasis within the document, no equivalent of HTML's b
and 1. If the information being presented is important, then consider presenting it in important rather than
emphasis.

#if5 9.19. emphasis Example

Usage:

<para>é&os; is without doubt <emphasis> the</emphasis>
premiere &unix;-like operating system for the Intel
architecture.</para>

Appearance:

FreeBSD is without doubt the premiere UNIX®-like operating system for the Intel architecture.

9.6.2. Acronyms

Many computer terms are acronyms, words formed from the first letter of each word in a phrase. Acronyms are
marked up into acronym elements. It is helpful to the reader when an acronym is defined on the first use, as
shown in the example below.

#if4] 9.20. acronym Example
Usage:

<para>Request For Comments (<acronym>RFC</acronym>) 1149
defined the use of avian carriers for transmission of
Internet Protocol (<acronym>IP</acronym>) data. The
quantity of <acronym>IP</acronym> data currently
transmitted in that manner is unknown.</para>

Appearance:

63

Quotations

Request For Comments (RFC) 1149 defined the use of avian carriers for transmission of Internet Protocol
(IP) data. The quantity of IP data currently transmitted in that manner is unknown.

9.6.3. Quotations

To quote text from another document or source, or to denote a phrase that is used figuratively, use quote. Most
of the markup tags available for normal text are also available from within a quote.

#if5 9.21. quote Example
Usage:

<para>However, make sure that the search does not go beyond the
<quote>boundary between local and public administration</quote>,
as <acronym>RFC</acronym> 1535 calls it.</para>

Appearance:

However, make sure that the search does not go beyond the “boundary between local and public
administration”, as REC 1535 calls it.

9.6.4. Keys, Mouse Buttons, and Combinations

To refer to a specific key on the keyboard, use keycap. To refer to a mouse button, use mousebutton . And to
refer to combinations of key presses or mouse clicks, wrap them all in keycombo .

keycombo has an attribute called action, which may be one of click, double-click, other, press,
seq, or simul. The last two values denote whether the keys or buttons should be pressed in sequence, or
simultaneously.

The stylesheets automatically add any connecting symbols, such as +, between the key names, when wrapped in
keycombo.

#if5 9.22. Keys, Mouse Buttons, and Combinations Example
Usage:

<para>To switch to the second virtual terminal, press
<keycombo action="simul"> <keycap>Alt</keycap>
<keycap> F1</keycap> </keycombo> .</para>

<para>To exit <command>vi</command> without saving changes, type
<keycombo action="seq"> <keycap>Esc</keycap> <keycap> :</keycap>
<keycap> gq</keycap> <keycap> !</keycap> </keycombo> .</para>

<para>My window manager is configured so that
<keycombo action="simul"> <keycap>Alt</keycap>
<mousebutton> right</mousebutton>
</keycombo> mouse button is used to move windows.</para>

Appearance:

64

9. DocBook Markup

To switch to the second virtual terminal, press Alt+F1.
To exit V1 without saving changes, type Esc: q .

My window manager is configured so that Alt+right mouse button is used to move windows.

9.6.5. Applications, Commands, Options, and Cites

Both applications and commands are frequently referred to when writing documentation. The distinction between
them is that an application is the name of a program or suite of programs that fulfill a particular task. A command
is the filename of a program that the user can type and run at a command line.

It is often necessary to show some of the options that a command might take.

Finally, it is often useful to list a command with its manual section number, in the “command(number)” format
so common in Unix manuals.

Mark up application names with application .

To list a command with its manual section number (which should be most of the time) the DocBook element is
citerefentry . This will contain a further two elements, refentrytitle and manvolnum. The content
of refentrytitle isthe name of the command, and the content of manvolnum is the manual page section.

This can be cumbersome to write, and so a series of general entities have been created to make this easier. Each
entity takes the form &man. manual -page .manual-section ;.

The file that contains these entities isin doc/share/xml/man-refs.ent ,and canbe referred to using this
FPI:

PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"
Therefore, the introduction to FreeBSD documentation will usually include this:
<!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//EN" [

<!ENTITY % man PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN">
%sman ;

1>
Use command to include a command name “in-line” but present it as something the user should type.
Use option to mark up the options which will be passed to a command.

When referring to the same command multiple times in close proximity, it is preferred to use the
&man. command .section ; notation to markup the first reference and use command to markup subsequent
references. This makes the generated output, especially HTML, appear visually better.

#if51 9.23. Applications, Commands, and Options Example
Usage:

<para><application> Sendmail</application> is the most
widely used Unix mail application.<para>

65

Files, Directories, Extensions, Device Names

<para><application> Sendmail</application> includes the
<citerefentry>
<refentrytitle> sendmail</refentrytitle>
<manvolnum> 8</manvolnum>
</citerefentry> , &man.mailg.1;, and &man.newaliases.1;
programs.</para>

<para>0ne of the command line parameters to <citerefentry>
<refentrytitle> sendmail</refentrytitle>
<manvolnum> 8</manvolnum>
</citerefentry> , <option>-bp</option>, will display the current
status of messages in the mail queue. Check this on the command
line by running <command> sendmail -bp</command> .</para>

Appearance:
Sendmail is the most widely used Unix mail application.
Sendmail includes the sendmail(8), mailq(1), and newaliases(1) programs.

One of the command line parameters to sendmail(8), - bp, will display the current status of messages in
the mail queue. Check this on the command line by running sendmail -bp.

TN
E Notice how the &man. command . section ; notation is easier to follow.

9.6.6. Files, Directories, Extensions, Device Names

To refer to the name of a file, a directory, a file extension, or a device name, use filename.

#if5 9.24. filename Example

Usage:

<para>The source for the Handbook in English is found in
<filename> /usr/doc/en US.IS08859-1/books/handbook/</filename> .
The main file is called <filename> book.xml</filename> .
There is also a <filename> Makefile</filename> and a
number of files with a <filename> .ent</filename> extension.</para>

<para><filename> kbdo</filename> is the first keyboard detected
by the system, and appears in
<filename> /dev</filename> .</para>

Appearance:

The source for the Handbook in English is found in /usr/doc/en US.IS08859-1/books/
handbook/ . The main file is called book . xml . There is also a Makefile and a number of files with
a .ent extension.

66

http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=mailq&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=newaliases&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8&manpath=freebsd-release-ports

9. DocBook Markup

‘ kbd0 is the first keyboard detected by the system, and appears in /dev.

9.6.7. The Name of Ports

These elements are part of the FreeBSD extension to DocBook, and do not exist in the original
DocBook DTD.

@ FreeBSD Extension

To include the name of a program from the FreeBSD Ports Collection in the document, use the package tag. Since
the Ports Collection can be installed in any number of locations, only include the category and the port name; do
not include /usr/ports.

By default, package refers to a binary package. To refer to a port that will be built from source, set the role
attribute to port.

#if4i] 9.25. package Example
Usage:

<para>Install the <package> net/wireshark</package> binary
package to view network traffic.</para>

<para><package role="port"> net/wireshark</package> can also be
built and installed from the Ports Collection.</para>

Appearance:
Install the net/wireshark binary package to view network traffic.

net/wireshark can also be built and installed from the Ports Collection.

9.6.8. Hosts, Domains, IP Addresses, User Names, Group Names, and Other System
Items

FreeBSD Extension
S These elements are part of the FreeBSD extension to DocBook, and do not exist in the original
DocBook DTD.

Information for “system items” is marked up with systemitem. The class attribute is used to identify the
particular type of information shown.

class="domainname"
The text is a domain name, such as FreeBSD.org or ngo.org.uk . There is no hostname component.

class="etheraddress"
The text is an Ethernet MAC address, expressed as a series of 2 digit hexadecimal numbers separated by colons.

67

http://www.freebsd.org/cgi/url.cgi?ports/net/wireshark/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/wireshark/pkg-descr

Hosts, Domains, IP Addresses, User Names, Group Names, and
Other System Items

class="fqdomainname"
The text is a Fully Qualified Domain Name, with both hostname and domain name parts.

class="ipaddress"
The text is an IP address, probably expressed as a dotted quad.

class="netmask"
The text is a network mask, which might be expressed as a dotted quad, a hexadecimal string, or as a / followed
by a number (CIDR notation).

class="systemname"
with class="systemname" the marked up information is the simple hostname, such as freefall or
wcarchive.

class="username"
The text is a username, like root.

class="groupname"
The text is a groupname, like wheel.

#if51 9.26. systemitem and Classes Example
Usage:

<para>The local machine can always be referred to by the

name <systemitem class="systemname"> 1localhost</systemitem> , which o
will have the IP

address <systemitem class="ipaddress"> 127.0.0.1</systemitem> .</para>

<para>The <systemitem class="domainname"> FreeBSD.org</systemitem>
domain contains a number of different hosts, including
<systemitem class="fqgdomainname"> freefall.FreeBSD.org</systemitem> and
<systemitem class="fgdomainname"> bento.FreeBSD.org</systemitem> .</
para>

<para>Wwhen adding an <acronym>IP</acronym> alias to an
interface (using <command> ifconfig</command>)
<emphasis> always</emphasis> use a netmask of
<systemitem class="netmask"> 255.255.255.255</systemitem> (which can
also be expressed as
<systemitem class="netmask"> oxffffffff</systemitem>).</para>

<para>The <acronym>MAC</acronym> address uniquely identifies

every network card in existence. A typical

<acronym>MAC</acronym> address looks like

<systemitem class="etheraddress"> 08:00:20:87:ef:do</systemitem> .</
para>

<para>To carry out most system administration functions
requires logging in as <Ssystemitem class="username"> root</
systemitem> .</para>

Appearance:

The local machine can always be referred to by the name Localhost, which will have the IP address
127.0.0.1.

68

9. DocBook Markup

The FreeBSD.org domain contains a number of different hosts, including
freefall.FreeBSD.org and bento.FreeBSD.org .

When adding an IP alias to an interface (using 1 fconfig) always use a netmask of 255 .255. 255 . 255
(which can also be expressed as OxXffffffff).

The MAC address uniquely identifies every network card in existence. A typical MAC address looks like
08:00:20:87:ef:dO .

To carry out most system administration functions requires logging in as root.

9.6.9. Uniform Resource Identifiers (URIs)

Occasionally it is useful to show a Uniform Resource Identifier (URI) without making it an active hyperlink. The

uri element makes this possible:

#if5 9.27. uri Example

Usage:

<para>This URL shows only as text:
<uri>https://www.FreeBSD.org</uri>. It does not
create a link.</para>

Appearance:

This URL shows only as text: https://www.FreeBSD.org .It does not create a link.

To create links, see i 9.8, “Links”.

9.6.10. Email Addresses

Email addresses are marked up as email elements. In the HTML output format, the wrapped text becomes a
hyperlink to the email address. Other output formats that support hyperlinks may also make the email address

into a link.

#if51 9.28. email with a Hyperlink Example

Usage:

<para>An email address that does not actually exist, like
<email>notreal@example.com</email>, can be used as an
example.</para>

Appearance:

An email address that does not actually exist, like <notreal@example.com >, can be used as an
example.

69

mailto:notreal@example.com

Describing Makefiles

A FreeBSD-specific extension allows setting the role attribute to Nnolink to prevent the creation of the
hyperlink to the email address.

#i {51 9.29. email Without a Hyperlink Example
Usage:

<para>Sometimes a link to an email address like
<email role="nolink"> notreal@example.com</email> is not
desired.</para>

Appearance:

Sometimes a link to an email address like <not real@example.com > is not desired.

9.6.11. Describing Makefiles

@ FreeBSD Extension

These elements are part of the FreeBSD extension to DocBook, and do not exist in the original
DocBook DTD.

Two elements exist to describe parts of Makefiles, buildtarget and varname.

buildtarget identifies a build target exported by a Makefile that can be given as a parameter to make.
varname identifies a variable that can be set (in the environment, on the command line with make, or within
the Makefile) to influence the process.

#if51 9.30. buildtarget and varname Example
Usage:

<para>Two common targets in a <filename> Makefile</filename>
are <buildtarget> all</buildtarget> and
<buildtarget> clean</buildtarget> .</para>

<para>Typically, invoking <buildtarget> all</buildtarget> will
rebuild the application, and invoking
<buildtarget> clean</buildtarget> will remove the temporary
files (<filename> .o</filename> for example) created by the
build process.</para>

<para><buildtarget> clean</buildtarget> may be controlled by a
number of variables, including <varname> CLOBBER</varname>
and <varname>RECURSE</varname> .</para>

Appearance:

Two common targets in aMakefile are all and clean.

70

mailto:notreal@example.com

9. DocBook Markup

Typically, invoking all will rebuild the application, and invoking clean will remove the temporary files
(.0 for example) created by the build process.

clean may be controlled by a number of variables, including CLOBBER and RECURSE .

9.6.12. Literal Text

Literal text, or text which should be entered verbatim, is often needed in documentation. This is text that is
excerpted from another file, or which should be copied exactly as shown from the documentation into another file.

Some of the time, programlisting will be sufficient to denote this text. But programlisting is not
always appropriate, particularly when you want to include a portion of a file “in-line” with the rest of the
paragraph.

On these occasions, use Literal.

#if5 9.31. literal Example
Usage:
<para>The <literal>maxusers 10</literal> line in the kernel

configuration file determines the size of many system tables, and is
a rough guide to how many simultaneous logins the system will

support.</para>

Appearance:

The maxusers 10 line in the kernel configuration file determines the size of many system tables, and
is a rough guide to how many simultaneous logins the system will support.

9.6.13. Showing Items That the User Must Fill In

There will often be times when the user is shown what to do, or referred to a file or command line, but cannot
simply copy the example provided. Instead, they must supply some information themselves.

replaceable is designed for this eventuality. Use it inside other elements to indicate parts of that element's
content that the user must replace.

#if5 9.32. replaceable Example
Usage:

<screen> &prompt.user; <userinput>man <replaceable> command</
replaceable> </userinput> </screen>

Appearance:
% man command

replaceable can be used in many different elements, including Literal. This example also shows
that replaceable should only be wrapped around the content that the user is meant to provide. The
other content should be left alone.

71

Showing GUI Buttons

Usage:

<para>The <literal>maxusers <replaceable> n</replaceable> </literal>
line in the kernel configuration file determines the size of many system
tables, and is a rough guide to how many simultaneous logins the system will
support.</para>

<para>For a desktop workstation, <literal>32</literal> is a good value
for <replaceable> n</replaceable> .</para>

Appearance:

The maxusers n line in the kernel configuration file determines the size of many system tables, and is
arough guide to how many simultaneous logins the system will support.

For a desktop workstation, 32 is a good value for n.

9.6.14. Showing GUI Buttons

Buttons presented by a graphical user interface are marked with guibutton . To make the text look more like a
graphical button, brackets and non-breaking spaces are added surrounding the text.

#i {51 9.33. guibutton Example
Usage:

<para>Edit the file, then click
<guibutton> [Save 1</guibutton> to save the
changes.</para>

Appearance:

Edit the file, then click [Save] to save the changes.

9.6.15. Quoting System Errors

System errors generated by FreeBSD are marked with errrorname . This indicates the exact error that appears.

Posan

#if5 9.34. errorname Example

Usage:

<screen><errorname> Panic: cannot mount root</errorname> </screen>

Appearance:

Panic: cannot mount root

72

9. DocBook Markup

9.7. Images

A Image support in the documentation is somewhat experimental. The mechanisms described
here are unlikely to change, but that is not guaranteed.

To provide conversion between different image formats, the graphics/ImageMagick port
must be installed. This port is not included in the textproc/docproj meta port, and must be
installed separately.

A good example of the use of images is the doc/en_US.IS08859-1/articles/vm-
design/ document. Examine the files in that directory to see how these elements are used
together. Build different output formats to see how the format determines what images are
shown in the rendered document.

9.7.1. Image Formats

The following image formats are currently supported. An image file will automatically be converted to bitmap or
vector image depending on the output document format.

These are the only formats in which images should be committed to the documentation repository.

EPS (Encapsulated Postscript)
Images that are primarily vector based, such as network diagrams, time lines, and similar, should be in this
format. These images have a . eps extension.

PNG (Portable Network Graphic)
For bitmaps, such as screen captures, use this format. These images have the . png extension.

PIC (PIC graphics language)
PIC is a language for drawing simple vector-based figures used in the pic(1) utility. These images have the
. pic extension.

SCR (SCReen capture)
This format is specific to screenshots of console output. The following command generates an SCR file
shot.scr from video buffer of /dev/ttyv0:

vidcontrol -p < /dev/ttyv@ > shot.scr

This is preferable to PNG format for screenshots because the SCR file contains plain text of the command lines
so that it can be converted to a PNG image or a plain text depending on the output document format.

Use the appropriate format for each image. Documentation will often have a mix of EPS and PNG images. The
Makefile sensure that the correct format image is chosen depending on the output format used. Do not commit
the same image to the repository in two different formats.

A The Documentation Project may eventually switch to using the SVG (Scalable Vector Graphic)
format for vector images. However, the current state of SVG capable editing tools makes this
impractical.

73

http://www.freebsd.org/cgi/url.cgi?ports/graphics/ImageMagick/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=pic&sektion=1&manpath=freebsd-release-ports

Image File Locations

9.7.2. Image File Locations
Image files can be stored in one of several locations, depending on the document and image:

+ In the same directory as the document itself, usually done for articles and small books that keep all their files
in a single directory.

+ In a subdirectory of the main document. Typically done when a large book uses separate subdirectories to
organize individual chapters.

When images are stored in a subdirectory of the main document directory, the subdirectory name must be
included in their paths in the Makefile and the imagedata element.

* Inasubdirectory of doc/share/images named after the document. For example, images for the Handbook
are stored in doc/share/images/books/handbook . Images that work for multiple translations are
stored in this upper level of the documentation file tree. Generally, these are images that can be used unchanged
in non-English translations of the document.

9.7.3. Image Markup

Images are included as part of amediaobject . The mediaobject can contain other, more specific objects.
We are concerned with two, the imageobject andthe textobject.

Include one imageobject , and two textobject elements. The imageobject will point to the name of
the image file without the extension. The textobject elements contain information that will be presented to
the user as well as, or instead of, the image itself.

Text elements are shown to the reader in several situations. When the document is viewed in HTML, text elements
are shown while the image is loading, or if the mouse pointer is hovered over the image, or if a text-only browser
is being used. In formats like plain text where graphics are not possible, the text elements are shown instead of
the graphical ones.

This example shows how to include an image called figl.png in a document. The image is a rectangle with an
A inside it:

<mediaobject>
<imageobject>
<imagedata fileref="figl"/> ©
</imageobject>

<textobject>
<literallayout class="monospaced"> +--------------- + 8

Hmmmeeeeooo +</literallayout>
</textobject>

<textobject>
<phrase>A picture</phrase> ©

</textobject>

</mediaobject>

© Include an imagedata element inside the imageobject element. The fileref attribute should
contain the filename of the image to include, without the extension. The stylesheets will work out which
extension should be added to the filename automatically.

8 The first textobject contains a literallayout element, where the class attribute is set to
monospaced . This is an opportunity to demonstrate ASCII art skills. This content will be used if the
document is converted to plain text.

74

9. DocBook Markup

Notice how the first and last lines of the content of the Literallayout element butt up next to the
element's tags. This ensures no extraneous white space is included.

© The second textobject contains asingle phrase element. The contents of this phrase will become the
alt attribute for the image when this document is converted to HTML.

9.7.4. Image Makefile Entries

Images must be listed in the Makefile in the IMAGES variable. This variable must contain the names of
all the source images. For example, if there are three figures, figl.eps, fig2.png, fig3.png, then the
Makefile should have lines like this in it.

IMAGES= figl.eps fig2.png fig3.png
or

IMAGES= figl.eps
IMAGES+= fig2.png
IMAGES+= fig3.png

Again, the Makefile will work out the complete list of images it needs to build the source document, you only
need to list the image files you provided.
9.7.5. Images and Chapters in Subdirectories

Be careful when separating documentation into smaller files in different directories (see ff 7.7.1, “Using General
Entities to Include Files”).

Suppose there is a book with three chapters, and the chapters are stored in their own directories,
called chapterl/chapter.xml , chapter2/chapter.xml ,and chapter3/chapter.xml .ifeach
chapter has images associated with it, place those images in each chapter's subdirectory (chapterl/,
chapter2/,and chapter3/).

However, doing this requires including the directory names in the IMAGES variable in the Makefile, and
including the directory name in the imagedata element in the document.

For example, if the book has chapterl/figl.png ,then chapterl/chapter.xml should contain:

<mediaobject>
<imageobject>
<imagedata fileref="chapterl/figl"/> ©
</imageobject>

</mediaobject>
© The directory name must be included in the fileref attribute.

The Makefile must contain:

IMAGES= chapterl/figl.png

75

Links

9.8. Links

e =
EE
Links are also in-line elements. To show a URI without creating a link, see fffj 9.6.9, “Uniform
Resource Identifiers (URIs)”.

9.8.1. xml:1id Attributes

Most DocBook elements accept an xml:1d attribute to give that part of the document a unique name. The
xml:1id can be used as a target for a crossreference or link.

Any portion of the document that will be a link target must have an xml: id attribute. Assigning an xml:id to
all chapters and sections, even if there are no current plans to link to them, is a good idea. These Xml : 1d s can be
used as unique reference points by anyone referring to the HTML version of the document.

#if] 9.35. xml:id on Chapters and Sections Example

<chapter xml:id="introduction">
<title>1Introduction</title>

<para>This is the introduction. It contains a subsection,
which is identified as well.</para>

<sectl xml:id="introduction-moredetails">
<title>More Details</title>

<para>This is a subsection.</para>
</sectl>
</chapter>

Use descriptive values for XmL:1d names. The values must be unique within the entire document, not just in a
single file. In the example, the subsection XmLl: id is constructed by appending text to the chapter XmL: id. This
ensures that the Xml: ids are unique. It also helps both reader and anyone editing the document to see where
the link is located within the document, similar to a directory path to a file.

9.8.2. Crossreferences with xref

xref provides the reader with a link to jump to another section of the document. The target xml : id is specified
in the Linkend attribute, and Xxref generates the link text automatically.

#if5 9.36. xref Example

Assume that this fragment appears somewhere in a document that includes the xml: id example shown
above:

<para>More information can be found
in <xref linkend="introduction"/> .</para>

76

9. DocBook Markup

<para>More specific information can be found
in <xref linkend="introduction-moredetails"/> .</para>

The link text will be generated automatically, looking like (emphasized text indicates the link text):
More information can be found in Chapter 1, Introduction.

More specific information can be found in Section 1.1, “More Details”.

The link text is generated automatically from the chapter and section number and title elements.

9.8.3. Linking to Other Documents on the Web

The link element described here allows the writer to define the link text. When link text is used, it is very important
to be descriptive to give the reader an idea of where the link goes. Remember that DocBook can be rendered to
multiple types of media. The reader might be looking at a printed book or other form of media where there are no
links. If the link text is not descriptive enough, the reader might not be able to locate the linked section.

Thexlink:href attribute is the URL of the page, and the content of the element is the text that will be displayed
for the user to activate.

In many situations, it is preferable to show the actual URL rather than text. This can be done by leaving out the
element text entirely.

#if51 9.37. link to a FreeBSD Documentation Web Page Example

Link to the book or article URL entity. To link to a specific chapter in a book, add a slash and the chapter file
name, followed by an optional anchor within the chapter. For articles, link to the article URL entity, followed
by an optional anchor within the article. URL entities can be found in doc/share/xml/urls.ent .

Usage for FreeBSD book links:

<para>Read the <link
xlink:href="&url.books.handbook;/svn.html#svn-intro"> SN
introduction</link>, then pick the nearest mirror from
the list of <link
xlink:href="&url.books.handbook;/svn.html#svn-mirrors"> Subversion
mirror sites</link>.</para>

Appearance:
Read the SVN introduction, then pick the nearest mirror from the list of Subversion mirror sites.
Usage for FreeBSD article links:

<para>Read this
<link xlink:href="&url.articles.bsdl-gpl;"> article
about the BSD license</link>, or just the
<link xlink:href="&url.articles.bsdl-gpl;#intro"> introduction</
link>.</para>

Appearance:

77

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn.html#svn-intro
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn.html#svn-mirrors

Linking to Other Documents on the Web

Read this article about the BSD license, or just the introduction.

#if51 9.38. link to a FreeBSD Web Page Example
Usage:

<para>0f course, you could stop reading this document and go to the
<link xlink:href="&url.base;/index.html"> FreeBSD home page</link> o
instead.</para>

Appearance:

Of course, you could stop reading this document and go to the FreeBSD home page instead.

#if5 9.39. link to an External Web Page Example
Usage:

<para>Wikipedia has an excellent reference on
<link
xlink:href="http://en.wikipedia.org/wiki/
GUID Partition Table"> GUID
Partition Tables</link>.</para>

Appearance:
Wikipedia has an excellent reference on GUID Partition Tables.
The link text can be omitted to show the actual URL:

<para>Wikipedia has an excellent reference on
GUID Partition Tables: <link
xlink:href="http://en.wikipedia.org/wiki/
GUID Partition Table"> </link>.</para>

The same link can be entered using shorter notation instead of a separate ending tag:

<para>Wikipedia has an excellent reference on
GUID Partition Tables: <link
xlink:href="http://en.wikipedia.org/wiki/GUID Partition Table"/
>.</para>

The two methods are equivalent. Appearance:

Wikipedia has an excellent reference on GUID Partition Tables: http://en.wikipedia.org/
wiki/GUID Partition_Table .

78

http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/bsdl-gpl
http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/bsdl-gpl#intro
http://www.FreeBSD.org/index.html
http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/GUID_Partition_Table

= 10. Style Sheets

XML is concerned with content, and says nothing about how that content should be presented to the reader
or rendered on paper. Multiple style sheet languages have been developed to describe visual layout, including
Extensible Stylesheet Language Transformation (XSLT), Document Style Semantics and Specification Language
(DSSSL), and Cascading Style Sheets (CSS).

The FDP documents use XSLT stylesheets to transform DocBook into XHTML, and then CSS formatting is applied
to the XHTML pages. Printable output is currently rendered with legacy DSSSL stylesheets, but this will probably
change in the future.

10.1. CSS

Cascading Style Sheets (CSS) are a mechanism for attaching style information (font, weight, size, color, and so forth)
to elements in an XHTML document without abusing XHTML to do so.

10.1.1. The DocBook Documents

The FreeBSD XSLT and DSSSL stylesheets refer to docbook. css , which is expected to be present in the same
directory as the XHTML files. The project-wide CSS file is copied from doc/share/misc/docbook.css
when documents are converted to XHTML, and is installed automatically.

= 11. #3%

72 Bl FreeBSD {4 (32 : FAQ, Handbook, tutorials, manual pagess) 14 R RGRE (FAQ) °

A FE ZDL FreeBSD FEENERIEINEGE FAQ KL > JRIGEERIZ & Frank Grinder
<elwood@mc5sys.in-berlin.de > 3fif§ Bernd Warken <bwarken@mayn.de > FEERERZE TR o

7% FAQ 2 B 3044 T #2Epx <doceng@FreeBSD.org > figs -

: i18n fi§ 110n 21 JEE0R ?
: i18n 2 internationalization Tfj 110n &2 localization o 55262 A T2 E 5 EMANEE -

i18n SERBHTK I A 18 58 » Sk 0" - FRtk - 1lon RREEEA I I 10 (A - &
el -

D AHEFGEE 2 8RR mailing list 15 ?
DR AFRIFEARBREEE S HA BB mailing Lists o 53 BEEHEIEE A7) H A BT EIROR
A

mailing lists FARRRAE, o ot B — R
E’j<freebsd translators@freebsd.org >#&fii

DO REEZ NS ERE 7
DOETREE o B \SEARNE - VBRI REN ST o T H ST A IR ~ BEHTHURS 0 SRR

AT DU PR A2 o
AR EREE - TSR -

D OBEORIPESEE S e
o B b o WEEESIOCIER IS - T ERMIB - BEERRRRE S LR ERGER B a0 -

WG AE—E B G o HLnE > W] LB PG PESF S (Spanish)) FAQ #8460 °F FIISC (Hungarian) e

L AR SR (AR 2
: IRFUEEETE [CBE5S b thiE Y FreeBSD Subversion repository fff (25 /ST (484 o & LA -

% svn checkout https://svn.FreeBSD.org/doc/head/ head
svn.FreeBSD.org,2 /A /) SVN faflg 35 o mT LA Subversion §EAHY:TE B i & 58 A A A1 AR B o

BT E 2 devel /subversion B o

IRAT LR B FER (i il svn o {7 DGRIRERE SUIFHE AR A 2 R B = 2 -

FlanprEZen US.IS08859-1/books/fdp-primer/book.xml R r33733 #1 r33734 {4
ZR - FERT ¢

% svn diff -r33733:33734 en_US.IS08859-1/books/fdp-primer/book.xml

D OBBJER AR A A S IR RO 7
DR EIRENRE 2T BRI RSB R o R E A b A E MR R — BRI LA - B0

JEEANEERRENS - R MHREE R AWLMo UIE B -

mailto:elwood@mc5sys.in-berlin.de
mailto:bwarken@mayn.de
mailto:doceng@FreeBSD.org
http://www.freebsd.org/docproj/translations.html
mailto:freebsd-translators@freebsd.org
https://svn.FreeBSD.org/
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn.html#svn-mirrors
http://www.freebsd.org/cgi/url.cgi?ports/devel/subversion/pkg-descr
http://www.FreeBSD.org/docproj/translations.html

ﬁ:ﬂ :

¥

82

A& EEAGCRS MR BEERORIE - B0 A NERIRRER R AR E AR - BELFF 2] FreeBSD
documentation project EJEzH1E o

DR NERER BT ERAEES o S ?
OAREW o (RIS b “FreeBSD #HH# SUIFEIREREIT HOKIR 2B - BOW LA o

BIe - SEHIERE SR = MEIR R A RAA —EAERITNE - Bt - AHRERERRCRE A
ELH A F] e & B A S LA EE L TR IR B E P .

%515 %] FreeBSD documentation project HE5w1E [A5 B AT IR MM ERIAE » SRR SU It BIRRIGERD
L BT AR B O

FRRIBI R CAEH N2t FreeBSD i mirror (M) HRESHUAE » IR SCIR M FIHHE » MR IRES
£ b T AT DA A 2 AR O BR R T B R - UM AT LUE $R M email #REEEY mailing list RS -

SRR > WUBR AR SCIFE - —BRIAEIREAIIRFR » STk e R IR EUE R S & HR A 5 4 — 82 FAQU
B AN BT 2 SRR SR

D DRI —EIUET o Z e R 7
COEEEWNME o EREEREREERABIEE RERA - D - MfiEE H AR ER

RE IR EEABIREEEMMEE LEAR -

HARAEHAE RO —BIREE (R & BRI E - AR AR (IR FreeBSD FH&E)) - HOEE(RL
TERZAE B CHORIRR AR A7 45 FreeBSD 3+ - (KREIREE T HRHE)

WA AN —TEE - ZE TR T L RE ?
or

F 2 RIRREEK - 22 BT B BRR AR A R0 ?

DOESE ECREE IRAVRIRE B R AR SRR T 0 B - 0P IERESNRE - BURRL ¢ ILERBIEA SUF BN

J2] LUIE SR AR o

H B » FreeBSD X HH#82 i7Efx L /gAY head/ HEkA o Mi#% Bk FAORIMKERE RO A28 »
R BR 150639 F 5 (FE 1Y 1999/01/20 5% 54 FreeBSD iy A4 /usr/share/misc/is0639) o

ﬁﬁi@%ﬁ%ﬁﬁ‘é%ﬁ AEEE TR (BRE - F30 IVEREZ G B T EEs » AARIREE R AR
A2

RIR » IRIERZEE LA S A #k T
SRR (B B o (Swedish) i ERRE - INEEZ & RE -

head/
sv_SE.IS08859-1/
Makefile
htdocs/
docproj/
books/
faq/
Makefile
book.xml

sv_SE.IS08859-1 &fikhe ##(lang) .##(encoding) MFIRIFEEI RS - HIER HH
73 1 Makefiles 1 » &1/ I AR RESCIRRY

SRz A tar(1) B2 gzip(1) SRIBIRAVEHRE SO AR AR A » f: 2F £ ARG EIK o

% cd doc

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1&manpath=freebsd-release-ports
http://www.FreeBSD.org/cgi/man.cgi?query=gzip&sektion=1&manpath=freebsd-release-ports

1L B

ik

R :

% tar cf swedish-docs.tar sv_SE.IS08859-1
% gzip -9 swedish-docs.tar

% - i swedish-docs.tar.gz WEIMEZEM L - EiFEAE B CHEZHREEISPARRED - 38
JEE] LA 3% 14 25 2| Documentation Engineering Team <doceng@F reeBSD.org > 3 -

B » ff5 A Bugzilla 558 — @RS DUBAAR 3 RS HBRECHT - &F - HEATLUEITR
B ~ ME SRR - SRR E R - RE A BN R HRIRR M B RS

515 @5 A\ (A2 S48 » 5l 2 Documentation Engineering Team
<doceng@FreeBSD.org > i 8) GMRBIVRIVEIRESCHE » W HERZ 5 P IEH e o thoh > ek
BIEE T 528,

L IREVHE S #A I RCS tag (72 "ID" Z HH i) ?

2. sv_SE.IS08859-1 Z&waTLlEFImake all 4z ?

3. make install BG4ER4G FiE

A FERIES - RSB TR - AGRIE LR RCR AT LUERERE A -

R FIRERES - Rl IR RAE IR A BIRE AR commit R T o

o ATDAIMAZE R R BB A A A HR P B A A A 7
DM EAAEEEM -

BIRGL » BERIRIEMERN Handbook EWREAEESCAR - WA EIEEETER BINEREEEN
Handbook 8& iR A ©

HAVER R A REFE » R HEAE L E IR AR T RRe ? (BB ~ B S~ %)
W By » A A] RESERE A B R By - S A8 FreeBSD AHBHRE MR o ILAL - 35] LIS Tt FreeBSD gy nl i
JE > ARBESREY - B A AR AR o

ERAREBA AR ER - 58 (A Bugzilla JiRHHASCHT Handbook LIMERERT - SRR FHEESURAYE
ATHRy » B IR EFEHEAY Handbook MY o

i -

D BB RN EN T TR E LRI AR ?
AR RYAE ASCII(Non-ASCIT) 7T » #REL(E] SGML entities 71 fEE5 i %

DA 8 — L+

Entity % f# : é

HRRER T €

Description: /)N “e” » fi#2: ~ % (acute accent)

Entity % f# : É

BT £

Description: &k “E” » dfi #4s ~ & 5 (acute accent)

Entity 42 f% : ü

HERER T U

Description: /)\ “u” » i H B2 58 & Hh) &5 84k (umlaut)

TEHET 1508879 5E 1 port 1% » wEATLIZE /usr/local/share/xml/is08879 #;Z|iZ Lbpy =t M5
%o

AR RN A 2

83

mailto:doceng@FreeBSD.org
mailto:doceng@FreeBSD.org
http://www.freebsd.org/cgi/url.cgi?ports/textproc/iso8879/pkg-descr

84

FEFCLNEA - FE#ELL “you” ACRENT: » T L45k & 12 A IER/AEIE AT RS -

R EEIAOEE W LU RIS L R - RS PR AR AR AE — I S LT R A REIPIE o AR
Sy 18 R RS HREERE PO B P P ORI o

BRR AR N ZURNET E— 2o H IR E 2

o
B8RP - @R AR T EAR

The FreeBSD Documentation Project

$FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12 ¢
02:42:33Z rcyu $
-->

The exact boilerplate may change, but it will always include a $FreeBSD: head/zh_TW.UTF-8/books/
fdp-primer/book.xml 49503 2016-10-12 02:42:33Z rcyu $ line and the phrase The FreeBSD
Documentation Project . Note that the $FreeBSD part is expanded automatically by Subversion,
so it should be empty (just $FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml
49503 2016-10-12 02:42:33Z rcyu $) for new files.

Your translated documents should include their own $FreeBSD: head/zh TW.UTF-8/books/fdp-primer/
book.xml 49503 2016-10-12 02:42:33Z rcyu $ line, and change the FreeBSD Documentation Project
lineto The FreeBSD language Documentation Project .

BEAh » EAAJEIN 158 = AT A AE VR P B0 - B RS R AT SR S AR W8 — R A 2 B4 BT i) B
IR » FEYESF SRR (Spanish) i 22 BRSE ERZ 2 R G2 -

<!--
The FreeBSD Spanish Documentation Project

$FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12
02:42:33Z rcyu $

Original revision: r38674
-->

= 12. PO #j:%

12.1. Introduction

GNU gettext 28 A7 #7 (B — {8 B 0 75 VA AR SL AN AE RS SCIFROBIRE - BHREE R0 SR 1R iA SO RE I 2 2
PO (Portable Object) i - *ERAURNGE M 7SN AUMREE 2Rt A o BUREAYT R] LLEHEGE A » SR MAE R AT
PRRITE BRI RA -

12.2. Hriz b F

TEf 1.1, “PRIE EF7 @ BRIRALJHFT R textproc/docproj port TRANSLATOR J3IE o #1592 AT i 12 3
H » ETTBEIEIER » HEFrE 4 port

cd /usr/ports/textproc/docproj

make config
make clean deinstall install clean

535 L 17 0 o S Leap Seconds 45 3P HE S SCRiE
JBFE 12.1. %2 4€ PO 4l a3

AR R R T EPOSRIR A7 o JE (&3 (7] {#] editors/poedit -

cd /usr/ports/editors/poedit
make install clean

MR 12.2. WIGRE
UKL HRORIERE - H ka5 MakeTile WAZE 7 T sl 2 A 6 SCRRAE BGE AR o

1. BESTHEEEN B o Err B EIGRE AR ~/doc/en_US.IS08859-1/articles/leap-
seconds/ o FIFIF CEIERY e e ~/doc/es ES.IS08859-1/articles/leap-seconds/
o PR T EE R HERA A RS - EAhERISAR] -

% svn mkdir --parents ~/doc/es ES.IS08859-1/articles/leap-seconds/

2. fREMSCRRAE MakeTile 1EBIEIRIE H #k -

% svn cp ~/doc/en_US.IS08859-1/articles/leap-seconds/Makefile \
~/doc/es_ES.1S08859-1/articles/leap-seconds/

TBAE 12.3. B

B A A MR ZER TR 7 R A SR R AR - AR T & - EEERTER - 55
BURSE S0 SUAF AR AT A © A R 500 P A A T B A RHRE LA

L eSS R IR SRR I #5 51 PO #E

cd ~/doc/es_ES.IS08859-1/articles/leap-seconds/
make po

[
“©
[

“©

2. ff[f PO fRERZRIGEIZEEIA PO M o A BENFMSmEERS T LA - EHANE editors/poedit [
poedit -

http://www.gnu.org/software/gettext/
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/leap-seconds
http://www.freebsd.org/cgi/url.cgi?ports/editors/poedit/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/poedit/pkg-descr

TS HERE

PO 1 4% 2 T {IE] 7 TC A3 AR 55 {2 T 2 [P A5 1 o 118 7 T A (B3« LAPH P 3Rk - %2 es_ES.po

% poedit es_ES.po

TBRE 12.4. BEAR BRSO
L EARREC

% cd ~/doc/es_ES.IS08859-1/articles/leap-seconds/
% make tran

PE AR S A4 R BT SO IR SO A AR AT » SCEE 2 article.xml - 452 book.xml -
2. W] LB HTML 2B 2 oE AR UM 56 I A BIBE AR AR -

make FORMATS=html
firefox article.html

[
“©
[

“©

123. 25 %8 3

FE STBTRESE SR B — P R T B B 37— 8 H B PHUE © FreeBSD RERESCIFAET H 8% - FIRE R I
LI#H_ AR % o ## 2/ NESRMIE T2 TS o HEE R JIRARFN W18 5 i) A% REGION 5 -

Kig 121 ERAHE

e Hh 5 HRE H ki PO H 4 7 FE
L % en US.IS08859-1en US.po 1SO 8859-1
EVIETSE Wik bn BD.UTF-8 bn BD.po UTF-8
FHEESC 2 da DK.IS08859-1da DK.po 1SO 8859-1
(538] de DE.IS08859-1de DE.po IS0 8859-1
AR) el GR.IS08859-7el GR.po ISO 8859-7
FEPEF 3L PYPEF es ES.IS08859-1es ES.po 1SO 8859-1
13T 12 fr FR.IS08859-1fr FR.po ISO 8859-1
I 1D "I F | hu HU.IS08859-2hu HU.po ISO 8859-2
FERFIL F A it IT.IS08859-15t IT.po ISO 8859-15
H L HZA ja JP.euclP ja JP.po EUCJP
FEL R ko KR.UTF-8 ko KR.po UTF-8
ETD'E E-gn mn_MN.UTF-8 mn_MN.po UTF-8

f B 3L Tar nl NL.IS08859-1nl NL.po ISO 8859-1
WL W no NO.IS08859-1no NO.po 1SO 8859-1
TS i) pl PL.IS08859-2pl PL.po 1SO 8859-2
CEEPE i} pt BR.IS08859-1pt BR.po 1SO 8859-1
('8 e ru RU.KOI8-R |ru RU.po KOI8-R
FEMAER FEWHERE sr YU.IS08859-2sr YU.po ISO 8859-2
+HHZ THH tr TR.IS08859-9tr TR.po ISO 8859-9
i i zh CN.UTF-8 zh CN.po UTF-8

86

i 12.PO Fliz%

By | EEEEZ B 71 B35
Hhr B |zh_TW.UTF-8 |zh_TW.po uTE-8

BURROLR E M H 8k T B 8 o BB Hi 11, PR BF” FR 0 & ~/doc/ o InfEsI A ~/
doc/de DE.IS08859-1/ - @xrfijt ~/doc/fr_FR.IS08859-1/ -

B R HEr e & AR SCHER T H % > 8% 2 articles/ fibooks/ -

15 B 854 A A AR SR B IO S BB o 140 > NanoBSD SRR ~/doc/
fr FR.IS08859-1/articles/nanobsd/ o T # B PSR & B AE~/doc/mn_MN.UTF-8/
books/handbook/ -

EHRREE— EHE AR EE S A GE R H B o RSB R BB EAEE » IAFES articles/ =k
books/ T H$k °

FreeBSD SCAFAOMIHERIF—(E Sk Makefile sl o F¥A0SCET LILISRARICH B el
Makefile sk - S=4EL B IRAS & 2 8% 7 book. xml #1 chapter.xml gk —{@fEZ » FrilE
FETR MakeFile 2RMIRLE 5 -

&5 12.1. 37 Porter Tt i PH PR T GE BT
7 Porter R TEYEF CHIEE o SR ~/doc/en _US.IS08859-1/books/porters-
handbook/ g4 -

1. PEEEZF S books Hek ~/doc/es ES.IS08859-1/books/ BERKAETE » AL A ZEH ST Porter
FHF Bk -

cd ~/doc/es_ES.IS08859-1/books/
svn mkdir porters-handbook
porters-handbook

2. fRFIGSCIRR) H $kiE 5 Makefile -

cd ~/doc/es_ES.IS08859-1/books/porters-handbook

svn cp ~/doc/en_US.IS08859-1/books/porters-handbook/Makefile .
Makefile

%
%

>

> o° o°

&2k Makefile sl B —pg book. xml :

#

$FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12 o
02:42:33Z rcyu $

#

Build the FreeBSD Porter's Handbook.

#
MAINTAINER=doc@FreeBSD.org
DOC?= book

FORMATS?= html-split

INSTALL COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

XML content
SRCS= book.xml

Images from the cross-document image library

87

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook

TS HERE

BUESCIFAE RS A HE (R U7 SRS 5 01 T make po BRlARNE -

88

#if5] 12.2. 37 PGP e CERILFERIEE

BT PGP b EANESIENE o EorEfrit ~/doc/en US.IS08859-1/articles/
pgpkeys/ fzE -

1. kX article H$k~/doc/fr_FR.IS08859-1/articles/ BAEMHFAE » fr LU Bgsr PGP 4
SROCEAT H %

2. RIS E g Makefile -

mi Makefile o - RaRRRMEACE » iLhim Makefile TMEH - %17
SFreeBSD. ..$ WiA T S @ et TR ACHF R AR R RN -

http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/pgpkeys

i 12.PO Fliz%

WITH ARTICLE TOC?= YES

INSTALL_COMPRESSED?= gz
INSTALL ONLY COMPRESSED?=

SRCS= article.xml
To build with just key fingerprints, set FINGERPRINTS ONLY.

URL RELPREFIX?= ../../../..
DOC_PREFIX?= ${.CURDIR}/../../..

.include "${DOC PREFIX}/share/mk/doc.project.mk"

SCRAEERIEIF % o W LIEI T make po 37 PO ¥ o

12.4. #33%
gettext R KGR LRI S ZEMLAHEN F B WFIASCIHRIEIPO 1 - FEF PO AR B3R\ 7 55 (1B

g o

FreeBSD PO B R4 N & B Z 1 PO o B LUSRHU BR AT DUTE (AR IRF I B AR BT 2R 3 PO # o

Fil PO fE4E 53 A ARBR I o 512 A edlitors/poedit » 2 ARATRLT FLARSE T SRAT - HoAAY PO fitfgie o
Bt —LE Y > BB AEBIET (E LR o Ports MRS » (935 devel/gtranslator -

fRE PO R RARE R - EEIPTARIRIEERCR -

#i7) 12.3. Blz2 Porter 3| FHIEF
i\ Porter FHITEHEF LA

L YIRS PBE ST Porter TR H #4306 58T PO 1 - EEAERY PO REQN £Ak 12.1, "SERAWE” Fr
R &njes ES.po o

cd ~/doc/es_ES.IS08859-1/books/porters-handbook
make po

()
“©
()

“©

2. {# PO K H v A\ B

% poedit es_ES.po

125, tga3E A 0942 7
12.5.1. %8 XML £2 %

Preserve XML tags that are shown in the English original.

#if 12.4. {558 XML FEE
SR

89

http://www.freebsd.org/cgi/url.cgi?ports/editors/poedit/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/devel/gtranslator/pkg-descr

B

s

H

If <acronym>NTP</acronym> is not being used

PEHESF SCRIRE -

Si <acronym>NTP</acronym> no se utiliza

125.2. kg% 4
REEMFEFRAIRNZE - fENRA R ERFELESY -
12.5.3. 724038 0942 8%

AUBEBNABRE —FAEMIRE - TERE -
« <citerefentry>

+ <command>

- <filename>

« <literal>

+ <manvolnum>

. <orgname>

+ <package>

« <programlisting>

+ <prompt>

« <refentrytitle>

+ <screen>

« <userinput>

* <varname>

12.5.4. $FreeBSD: head/zh_TW.UTF-8/books/fdp-primer/book.xml 49503

2016-10-12 02:42:33Z rcyu $ Strings

The $FreeBSD: head/zh_TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12 02:42:33Z rcyu $ version strings
used in files require special handling. In examples like &jff] 12.1, “#37 Porter A FHIEFEERNZE" |, these
strings are not meant to be expanded. The English documents use $ entities to avoid including actual

literal dollar signs in the file:

$FreeBSD$

RAEHITFSR A G $ entities B RUEE87FS% » I AN LT HR R B AU T8

When a PO file is created, the $ entities used in examples are replaced with actual dollar signs.
The resulting literal $FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503
2016-10-12 02:42:33Z rcyu $ string will be wrongly expanded by the version control system when

the file is committed.

90

i 12.PO Fliz%

RS P A B4 P LA PR E 5 | - B A $ SREUCEE3FFSE » i A B PO REAmiERS -

$FreeBSD$

12.6. RFIF M

JESCHO R ARAS T DAFE AR IR 3L » ARENRRRET D & LIS 2R » KEf My PO ARiEas A 151 il LUBUR
BT UE - BRI E A D BRI T SRR T R AR R S S

#i{9 12.5. 4 P YL F 3C Porter i

A e A0 THEE 2 Wiy 05 B0AZ 00 P UL ST SCRR Porter -

L GRS R SO o R RS EEE o BT LARE A RS2 book . xmL -
% cd ~/doc/es_ES.IS08859-1/books/porters-handbook
% make tran

2. EEENEEITAIbooK. xmU SHTMLIY i Firefox 58I EE o 52 AN SCHRGRAR R A0 B » Hft
FORMATS Him] LLisiEfi - #5 344 5.1, “Common Output Formats” o
% make FORMATS=html
% firefox book.html

12.7. R L #7803%

MEFSEUR T HOBRRE o BESFIEE RIS S AN - BERREIMNOB L » AT diff HHRAT -

5] A g A e dift R AT LLg BT 2l documentation bug report By, code review o

1.

#i{y] 12.6. NanoBSD ST EL Y PHHEF SRl

BN FreeBSD Rt A< BB G L ARSI PO REAYEE —17

#$FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12
02:42:33Z rcyu $

#afn Makefile - po REFIEE A4) XML BIRRERUA TS H R 47

cd ~/doc/es_ES.IS08859-1/articles/nanobsd/
s

akefile article.xml es ES.po

= o° o°

% svn add Makefile article.xml es_ES.po
A Makefile

A article.xml

A es ES.po

Set the Subversion svn:keywords properties on these files to FreeBSD=%H so $FreeBSD:
head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12
02:42:33Z rcyu $ strings are expanded into the path, revision, date, and author when
committed:

91

https://bugs.freebsd.org/bugzilla/enter_bug.cgi?product=Documentation
https://reviews.freebsd.org/

% svn propset svn:keywords FreeBSD=%H Makefile article.xml ¢
es_ES.po

property 'svn:keywords' set on 'Makefile'

property 'svn:keywords' set on 'article.xml'

property 'svn:keywords' set on 'es ES.po'

MoEREZAIMIME JER o EEEFIwE L text/xml sPo fEE text/x-gettext-
translation -

% svn propset svn:mime-type text/x-gettext-translation es_ES.po
property 'svn:mime-type' set on 'es ES.po'

% svn propset svn:mime-type text/xml article.xml

property 'svn:mime-type' set on 'article.xml'

fi& ~/doc/ FIELUHHERA diff » L BURSTERANERS o 5 AT LLB BIRRACE il B 1SRG
3% Hik

% cd ~/doc
svn diff es_ES.IS08859-1/articles/nanobsd/ > /tmp/es_nanobsd.u
diff

92

#ify 12.7. Explaining-BSD Y Z f4&# . UTF-8 i

1.

B4 1N FreeBSD fift A< ER FEAEEI| PO HEHYEE —1T

#$FreeBSD: head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12
02:42:33Z rcyu $

nMakefile - po fEFIE £ i) XML BFESIRRA RSB R 4%

% cd ~/doc/ko_KR.UTF-8/articles/explaining-bsd/
% s

Makefile article.xml ko KR.po

% svn add Makefile article.xml ko KR.po

A Makefile

A article.xml

A ko KR.po

Set the Subversion svn:keywords properties on these files to FreeBSD=%H so $FreeBSD:
head/zh TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12
02:42:33Z rcyu $ strings are expanded into the path, revision, date, and author when
committed:

% svn propset svn:keywords FreeBSD=%H Makefile article.xml
ko_KR.po

property 'svn:keywords' set on 'Makefile'

property 'svn:keywords' set on 'article.xml'

property 'svn:keywords' set on 'ko KR.po'

ARREME SR MIME SR o (K] R g LM SR 00 UTE-8 7o sE » BHHEEIEE © B T B LA
REE LR RRA R AR > fbsdinotbinary ik FHEHE

% svn propset svn:mime-type 'text/x-gettext-translation#
charset=UTF-8' ko_KR.po

property 'svn:mime-type' set on 'ko KR.po'

i 12.PO Fliz%

5.

% svn propset fbsd:notbinary yes ko_KR.po

property 'fbsd:notbinary' set on 'ko KR.po'

% svn propset svn:mime-type 'text/xml#charset=UTF-8' article.xml
property 'svn:mime-type' set on 'article.xml'

% svn propset fbsd:notbinary yes article.xml
property 'fbsd:notbinary' set on 'article.xml'

1t ~/doc/ BN TEEHIE R diff o

% cd ~/doc
svn diff ko KR.UTF-8/articles/explaining-bsd > /tmp/ko-
explaining.diff

93

= 13. §1F A&

13.1. v 7%

Technical documentation can be improved by consistent use of several principles. Most of these can be classified
into three goals: be clear, be complete, and be concise. These goals can conflict with each other. Good writing
consists of a balance between them.

13.1.1. Be Clear

Clarity is extremely important. The reader may be a novice, or reading the document in a second language. Strive
for simple, uncomplicated text that clearly explains the concepts.

Avoid flowery or embellished speech, jokes, or colloquial expressions. Write as simply and clearly as possible.
Simple text is easier to understand and translate.

Keep explanations as short, simple, and clear as possible. Avoid empty phrases like “in order to”, which usually just
means “to”. Avoid potentially patronizing words like “basically”. Avoid Latin terms like “i.e.” or “cf.”, which may
be unknown outside of academic or scientific groups.

Write in a formal style. Avoid addressing the reader as “you”. For example, say “copy the file to /tmp” rather than
“you can copy the file to /tmp”.

Give clear, correct, tested examples. A trivial example is better than no example. A good example is better yet. Do
not give bad examples, identifiable by apologies or sentences like “but really it should never be done that way”.
Bad examples are worse than no examples. Give good examples, because even when warned not to use the example
as shown, the reader will usually just use the example as shown.

” o« ” o«

Avoid weasel words like “should”, “might”, “try”, or “could”. These words imply that the speaker is unsure of the
facts, and create doubt in the reader.

Similarly, give instructions as imperative commands: not “you should do this”, but merely “do this”.

13.1.2. Be Complete

Do not make assumptions about the reader's abilities or skill level. Tell them what they need to know. Give links
to other documents to provide background information without having to recreate it. Put yourself in the reader's
place, anticipate the questions they will ask, and answer them.

13.1.3. Be Concise

While features should be documented completely, sometimes there is so much information that the reader cannot
easily find the specific detail needed. The balance between being complete and being concise is a challenge. One
approach is to have an introduction, then a “quick start” section that describes the most common situation,
followed by an in-depth reference section.

13.2. Guidelines

To promote consistency between the myriad authors of the FreeBSD documentation, some guidelines have been
drawn up for authors to follow.

Use American English Spelling
There are several variants of English, with different spellings for the same word. Where spellings differ, use

” @

the American English variant. “color”, not “colour”, “rationalize”, not “rationalise”, and so on.

Guidelines

e 2
TR
The use of British English may be accepted in the case of a contributed article, however
the spelling must be consistent within the whole document. The other documents such
as books, web site, manual pages, etc. will have to use American English.

Do not use contractions
Do not use contractions. Always spell the phrase out in full. “Don't use contractions” is wrong.

Avoiding contractions makes for a more formal tone, is more precise, and is slightly easier for translators.

Use the serial comma
In a list of items within a paragraph, separate each item from the others with a comma. Separate the last item
from the others with a comma and the word “and”.

For example:

This is a list of one, two and three items.
Is this a list of three items, “one”, “two”, and “three”, or a list of two items, “one” and “two and three”?
It is better to be explicit and include a serial comma:

This is a list of one, two, and three items.

Avoid redundant phrases
Do not use redundant phrases. In particular, “the command”, “the file”, and “man command” are often
redundant.

For example, commands:

Wrong: Use the SVN command to update sources.

Right: Use SVN to update sources.

Filenames:

Wrong: ... in the filename /etc/rc.local ..

Right: ...in /etc/rc. local ..

Manual page references (the second example uses citerefentry with the &man.csh.1; entity):
Wrong: See man csh for more information.

Right: See csh(1).

Two spaces between sentences
Always use two spaces between sentences, as it improves readability and eases use of tools such as Emacs.

A period and spaces followed by a capital letter does not always mark a new sentence, especially in names.
“Jordan K. Hubbard” is a good example. It has a capital H following a period and a space, and is certainly not
a new sentence.

For more information about writing style, see Elements of Style, by William Strunk.

96

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1&manpath=freebsd-release-ports
http://www.bartleby.com/141/

B 13 R R A

13.3. A #&35 &

RS R R Z (R E P ERE - & T IRIF R RS — B - 3587 T IR RS ED] -
133.1. X 8

Tag FER D& /N 8 » AN para - fiijEPARA -

T SGML ATHIR A KEFRFET » 52« <!ENTITY.> J <!DOCTYPE.> » mirg <!entity.> }
<!doctype.> -

13.3.2. Acronyms

HrE F (acronym)il # e P — RIS - L EFEIRES HSE SR - Lkl “Network Time Protocol
(NTP)” - EHMEF 1% EZEERFHZEET (MIETEAR - RIEGE A e85 UFEGEEEE
B RFET o« WEEAERGE R > A g7 K% HEEREM UAEFES IR
FIBF B H SE R % o

P EE EL A fEacronym g A -

13.3.3. %4

ERERARRE R - FEEROE —TEA M -

RETHIERE G L2 W E = O A IG5 RAEEA D W (E 2 A RAEHE - & EE 8 E=H - AL

tab Bz o b4 - 7 tab BIAIAE R A H - WAEESITREMEZH - (8 tag BIASCE BB —1TH)
Al RUSE TR Z (8 25 B DA HE -

BAAFF - FEEIPTH A RIERECE T EER -

A RBIEORE G EEE R RA o BT R IR Bh AR (EE T AR A A AE AR A -

RS

When an element is too long to fit on the remainder of a line without wrapping, moving the start tag to the next
line can make the source easier to read. In this example, the systemitem element has been moved to the next
line to avoid wrapping and indenting:

Configurations to help various text editors conform to these guidelines can be found in & 14, Editor Configuration.

13.3.4. 12 KA
13.3.4.1. 2K =47

(] — KA HESE AR IR B B LU — AT R B > TSR AEHE S AR AL © b

13.3.4.2. 2K 89917

%2 itemizedlist ERMEHEE LAG R EEMXFER » LAEGHHMESAHETAS - FHEHN
FERE®H BT -

74k - B2 para f term FHAVEEL I AN THERCH MR - WU L30T B - A BAE R SR A —
FTARIA LA B A S o

IR E MR RS R R R L IE AR o
AN B EteiE AR SR AR - &R R IR -

R IR S AR L IR - BRI EmMERRS B OTE o REERNEE > BE
T EOEE R -

98

B 13 5 REAE

058 T AREE AL RS - T LLBE S — MBS B IUE R —4T -
1335. a8y g%
TS B0 » SRS IA SRR » th—EE sm R - -

3¢ > 192 Handbook BB A LR kP T WREE s - TR FI R OB 2 HIBTR (F OB0 » 2
M R S A R -

BB 5 BRI LM E G T - it — 2R BRI AT R G 80 AEF) - JERFEEJE commmit (&
o B BHEMNRRATR VAT - RREIR commit 7 o TS IREY commit 55k - FEIAMERIE R 2
whitespace-only (5= T) AURERL > Atk —2K » BHREMPKEE AT LLZIE 55 — K commit T o

13.3.6. Nonbreaking space

ARG —LEIE DL T AT « SRR EREER) ~ BUREEFGE R AT o B THREIL SRR LA
RETIEFIARE o JtHE-R 5@l 7825 405 HTML & 5 A B & 20 T i 2 A g HEEDE -

Data capacity ranges from 40 MB to 15
GB# Hardware compression ..

FEf A DB R A)F 2 [EOETT o LUR R EEU1{ F nonbreaking spaces :
© TEBTFEEA M
57600 bps

o TEREA AL B ARE 2]
&os; 9.2

« multiword 7 [({# S/ » {22 “The FreeBSD Brazilian Portuguese Documentation Project” g% =

208 BrAf Ay - BN)

Sun Microsystems

134. 3% %
DUTHBETIH (ETE FreeBSD SCHATERPRENANG o HHNEIEHA0AR + #:00 FreeBsD

documentation project mailing list o

Word XML Code Notes
CD-ROM <acronym> CD-ROM</
acronym>
DoS (Denial of Service) <acronym>DoS</acronym>
email

file system

[Psec

Internet

manual page

mail server

name server

Ports Collection

99

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

Word XML Code Notes

read-only

Soft Updates

stdin <varname> stdin</varname>

stdout <varname> stdout</varname>

stderr <varname> stderr</varname>

Subversion <application> Subversion </f"E k2 SVNzE3E R Subversion
application> JEFFEZL - Ll<command> svn</

command> 3k ERFES o

UNIX® &unix;

userland fuser space » N> ©

web server

100

= 14. Editor Configuration

Adjusting text editor configuration can make working on document files quicker and easier, and help documents
conform to FDP guidelines.

14.1. Vim

Install from editors/vim or editors/vim-lite, then follow the configuration instructions in i 14.1.2,
“Configuration”.

14.1.1. Use

Press P to reformat paragraphs or text that has been selected in Visual mode. Press T to replace groups of eight
spaces with a tab.

14.1.2. Configuration

Edit ~/ . vimrc, adding these lines to the end of the file:

http://www.freebsd.org/cgi/url.cgi?ports/editors/vim/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/vim-lite/pkg-descr

14.2. Emacs

Install from editors/emacs or editors/xemacs.

Edit ~/ .emacs , adding this line:

14.3. nano

Install from editors/nano or editors/nano-devel.

14.3.1. Configuration

Copy the sample XML syntax highlight file to the user's home directory:

Add these lines to the new ~/ .nanorc.

Process the file to create embedded tabs:

14.3.2. Use

Specify additional helpful options when running the editor:

Users of csh(1) can define an alias in ~/ . cShrc to automate these options:

After the alias is defined, the options will be added automatically:

=

02

http://www.freebsd.org/cgi/url.cgi?ports/editors/emacs/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/xemacs/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/nano/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/nano-devel/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1&manpath=freebsd-release-ports

& 15. {1, 2 %

This document is deliberately not an exhaustive discussion of XML, the DTDs listed, and the FreeBSD
Documentation Project. For more information about these, you are encouraged to see the following web sites.

15.1. FreeBSD <t #43t3)
+ FreeBSD {3 #I4AE

¢ FreeBSD {# F F i}

15.2. XML

« W3C's XML 44 & SGML/XML 4§ &

15.3. HTML
- EREAEGE

+ The HTML 4.0 #1#% 5

15.4. DocBook

+ The DocBook /%% E; & » DocBook DTD 4t & &
* DocBook : The Definitive Guide » DocBook DTDf44 b 44 o

+ The DocBook Open Repository contains DSSSL stylesheets and other resources for people using DocBook

http://www.FreeBSD.org/docproj/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/index.html
http://www.w3.org/XML/
http://www.w3.org/
http://www.w3.org/TR/REC-html40/
http://www.oasis-open.org/docbook/
http://www.docbook.org/
http://docbook.sourceforge.net/

fi sk A B4

These examples are not exhaustive—they do not contain all the elements that might be desirable to use,
particularly in a document's front matter. For more examples of DocBook markup, examine the XML source for
this and other documents available in the Subversion dOC repository, or available online starting at http://
svnweb.FreeBSD.org/doc/ .

A.1. DocBook book

#if] A.1. DocBook book

http://svnweb.FreeBSD.org/doc/
http://svnweb.FreeBSD.org/doc/

FifEk A 225

A.2. DocBook article

#if] A.2. DocBook article

106

Fif&k A 22451

107

7l

Formal Public Identifier, 26, 26

	FreeBSD 文件計畫入門書
	內容目錄
	序
	1. Shell 提示符號(Prompts)
	2. 書中所用的編排風格
	3. 注意、技巧、重要訊息、警告、與範例的運用。
	4. 感謝

	章 1. 概論
	1.1. 快速上手
	1.2. FreeBSD 文件組

	章 2. 工具
	2.1. 必備工具
	2.1.1. DTDs 與 Entities

	2.2. 輔助工具
	2.2.1. 軟體

	章 3. 工作副本
	3.1. Documentation and Manual Pages
	3.2. Choosing a Directory
	3.3. Checking Out a Copy
	3.4. Updating a Working Copy
	3.5. Reverting Changes
	3.6. Making a Diff
	3.7. Subversion References

	章 4. Documentation Directory Structure
	4.1. The Top Level, doc/
	4.2. The lang.encoding/ Directories
	4.3. Document-Specific Information
	4.3.1. The Handbook
	4.3.1.1. Physical Organization
	4.3.1.1.1. Makefile
	4.3.1.1.2. book.xml
	4.3.1.1.3. directory/chapter.xml

	章 5. The Documentation Build Process
	5.1. Rendering DocBook into Output
	5.2. The FreeBSD Documentation Build Toolset
	5.3. Understanding Makefiles in the Documentation Tree
	5.3.1. Subdirectory Makefiles
	5.3.2. Documentation Makefiles

	5.4. FreeBSD Documentation Project Make Includes
	5.4.1. doc.project.mk
	5.4.1.1. Variables
	5.4.1.2. Conditionals

	5.4.2. doc.subdir.mk
	5.4.2.1. Variables
	5.4.2.2. Targets and Macros
	5.4.2.2.1. Provided Targets

	5.4.2.3. More on Conditionals
	5.4.2.4. Looping Constructs in make (.for)

	章 6. 網站
	6.1. 環境變數
	6.2. Building and Installing the Web Pages

	章 7. XML Primer
	7.1. 概論
	7.2. Elements, Tags, and Attributes
	7.2.1. To Do…

	7.3. The DOCTYPE Declaration
	7.3.1. Formal Public Identifiers (FPIs)
	7.3.1.1. catalog Files

	7.3.2. Alternatives to FPIs

	7.4. Escaping Back to XML
	7.5. Comments
	7.5.1. To Do…

	7.6. Entities
	7.6.1. General Entities
	7.6.2. Parameter Entities
	7.6.3. To Do…

	7.7. Using Entities to Include Files
	7.7.1. Using General Entities to Include Files
	7.7.2. Using Parameter Entities to Include Files
	7.7.3. To Do…
	7.7.3.1. Use General Entities to Include Files
	7.7.3.2. Use Parameter Entities to Include Files

	7.8. Marked Sections
	7.8.1. Marked Section Keywords
	7.8.1.1. CDATA
	7.8.1.2. INCLUDE and IGNORE

	7.8.2. To Do…

	7.9. Conclusion

	章 8. XHTML Markup
	8.1. Introduction
	8.2. Formal Public Identifier (FPI)
	8.3. Sectional Elements
	8.4. Block Elements
	8.4.1. Headings
	8.4.2. Paragraphs
	8.4.3. Block Quotations
	8.4.4. Lists
	8.4.5. Pre-formatted Text
	8.4.6. Tables

	8.5. In-line Elements
	8.5.1. Emphasizing Information
	8.5.2. Indicating Fixed-Pitch Text
	8.5.3. Links
	8.5.3.1. Linking to Other Documents on the Web
	8.5.3.2. Linking to Specific Parts of Documents

	章 9. DocBook Markup
	9.1. Introduction
	9.2. FreeBSD Extensions
	9.2.1. FreeBSD Elements
	9.2.2. FreeBSD Entities

	9.3. Formal Public Identifier (FPI)
	9.4. Document Structure
	9.4.1. Starting a Book
	9.4.2. Starting an Article
	9.4.3. Indicating Chapters
	9.4.4. Sections Below Chapters
	9.4.5. Subdividing Using part Elements

	9.5. Block Elements
	9.5.1. Paragraphs
	9.5.2. Block Quotations
	9.5.3. Tips, Notes, Warnings, Cautions, and Important Information
	9.5.4. 舉例
	9.5.5. Lists and Procedures
	9.5.6. Showing File Samples
	9.5.7. Callouts
	9.5.8. Tables
	9.5.9. Examples for the User to Follow

	9.6. In-line Elements
	9.6.1. Emphasizing Information
	9.6.2. Acronyms
	9.6.3. Quotations
	9.6.4. Keys, Mouse Buttons, and Combinations
	9.6.5. Applications, Commands, Options, and Cites
	9.6.6. Files, Directories, Extensions, Device Names
	9.6.7. The Name of Ports
	9.6.8. Hosts, Domains, IP Addresses, User Names, Group Names, and Other System Items
	9.6.9. Uniform Resource Identifiers (URIs)
	9.6.10. Email Addresses
	9.6.11. Describing Makefiles
	9.6.12. Literal Text
	9.6.13. Showing Items That the User Must Fill In
	9.6.14. Showing GUI Buttons
	9.6.15. Quoting System Errors

	9.7. Images
	9.7.1. Image Formats
	9.7.2. Image File Locations
	9.7.3. Image Markup
	9.7.4. Image Makefile Entries
	9.7.5. Images and Chapters in Subdirectories

	9.8. Links
	9.8.1. xml:id Attributes
	9.8.2. Crossreferences with xref
	9.8.3. Linking to Other Documents on the Web

	章 10. Style Sheets
	10.1. CSS
	10.1.1. The DocBook Documents

	章 11. 翻譯
	章 12. PO 翻譯
	12.1. Introduction
	12.2. 快速上手
	12.3. 建立新翻譯
	12.4. 翻譯
	12.5. 給翻譯者的提示
	12.5.1. 保留 XML 標籤
	12.5.2. 保留空白
	12.5.3. 不要翻譯的標籤
	12.5.4. $FreeBSD: head/zh_TW.UTF-8/books/fdp-primer/book.xml 49503 2016-10-12 02:42:33Z rcyu $ Strings

	12.6. 編譯翻譯的文件
	12.7. 提交新翻譯

	章 13. 寫作風格
	13.1. 叮嚀
	13.1.1. Be Clear
	13.1.2. Be Complete
	13.1.3. Be Concise

	13.2. Guidelines
	13.3. 風格指南
	13.3.1. 大小寫
	13.3.2. Acronyms
	13.3.3. 縮排
	13.3.4. 標籤風格
	13.3.4.1. 標籤空行
	13.3.4.2. 標籤的分行

	13.3.5. 空白的更改
	13.3.6. Nonbreaking space

	13.4. 詞彙表

	章 14. Editor Configuration
	14.1. Vim
	14.1.1. Use
	14.1.2. Configuration

	14.2. Emacs
	14.3. nano
	14.3.1. Configuration
	14.3.2. Use

	章 15. 他山之石
	15.1. FreeBSD 文件計劃
	15.2. XML
	15.3. HTML
	15.4. DocBook

	附錄 A. 舉例
	A.1. DocBook book
	A.2. DocBook article

	索引

