
LDAP Authentication

Toby Burress <kurin@causa-sui.net >
Revision: 47080

Copyright © 2007, 2008 The FreeBSD Documentation Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2015-07-25 16:21:53Z by bcr.

Abstract
This document is intended as a guide for the configuration of an LDAP server (principally an
OpenLDAP server) for authentication on FreeBSD. This is useful for situations where many
servers need the same user accounts, for example as a replacement for NIS.

Table of Contents
1. Preface . 1
2. Configuring LDAP . 1
3. Client Configuration . 5
4. Security Considerations . 9
A. Useful Aids . 11
B. OpenSSL Certificates for LDAP . 11

1. Preface
This document is intended to give the reader enough of an understanding of LDAP to configure an LDAP server.
This document will attempt to provide an explanation of net/nss_ldap and security/pam_ldap for use with client
machines services for use with the LDAP server.

When finished, the reader should be able to configure and deploy a FreeBSD server that can host an LDAP directory,
and to configure and deploy a FreeBSD server which can authenticate against an LDAP directory.

This article is not intended to be an exhaustive account of the security, robustness, or best practice considerations
for configuring LDAP or the other services discussed herein. While the author takes care to do everything correctly,
they do not address security issues beyond a general scope. This article should be considered to lay the theoretical
groundwork only, and any actual implementation should be accompanied by careful requirement analysis.

2. Configuring LDAP
LDAP stands for “Lightweight Directory Access Protocol” and is a subset of the X.500 Directory Access Protocol.
Its most recent specifications are in RFC4510 and friends. Essentially it is a database that expects to be read from
more often than it is written to.

The LDAP server OpenLDAP will be used in the examples in this document; while the principles here should be
generally applicable to many different servers, most of the concrete administration is OpenLDAP-specific. There

mailto:kurin@causa-sui.net
https://svnweb.freebsd.org/changeset/doc/47080
http://www.freebsd.org/cgi/url.cgi?ports/net/nss_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr
http://www.ietf.org/rfc/rfc4510.txt
http://www.openldap.org/

Setting Up the Server for Connections

are several server versions in ports, for example net/openldap24-server. Client servers will need the corresponding
net/openldap24-client libraries.

There are (basically) two areas of the LDAP service which need configuration. The rst is setting up a server to
receive connections properly, and the second is adding entries to the server's directory so that FreeBSD tools know
how to interact with it.

2.1. Setting Up the Server for Connections

Note
This section is specific to OpenLDAP. If you are using another server, you will need to consult
that server's documentation.

2.1.1. Installing OpenLDAP

First, install OpenLDAP:

Example 1. Installing OpenLDAP
cd /usr/ports/net/openldap24-server
make install clean

This installs the slapd and slurpd binaries, along with the required OpenLDAP libraries.

2.1.2. Configuring OpenLDAP

Next we must configure OpenLDAP.

You will want to require encryption in your connections to the LDAP server; otherwise your users' passwords will
be transferred in plain text, which is considered insecure. The tools we will be using support two very similar kinds
of encryption, SSL and TLS.

TLS stands for “Transportation Layer Security”. Services that employ TLS tend to connect on the same ports as the
same services without TLS; thus an SMTP server which supports TLS will listen for connections on port 25, and
an LDAP server will listen on 389.

SSL stands for “Secure Sockets Layer”, and services that implement SSL do not listen on the same ports as their
non-SSL counterparts. Thus SMTPS listens on port 465 (not 25), HTTPS listens on 443, and LDAPS on 636.

The reason SSL uses a different port than TLS is because a TLS connection begins as plain text, and switches to
encrypted traffic after the STARTTLS directive. SSL connections are encrypted from the beginning. Other than that
there are no substantial differences between the two.

Note
We will adjust OpenLDAP to use TLS, as SSL is considered deprecated.

2

http://www.freebsd.org/cgi/url.cgi?ports/net/openldap24-server/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/openldap24-client/pkg-descr

LDAP Authentication

Once OpenLDAP is installed via ports, the following configuration parameters in /usr/local/etc/openl-
dap/slapd.conf will enable TLS:

security ssf=128

TLSCertificateFile /path/to/your/cert.crt
TLSCertificateKeyFile /path/to/your/cert.key
TLSCACertificateFile /path/to/your/cacert.crt

Here, ssf=128 tells OpenLDAP to require 128-bit encryption for all connections, both search and update. This
parameter may be configured based on the security needs of your site, but rarely you need to weaken it, as most
LDAP client libraries support strong encryption.

The cert.crt , cert.key , and cacert.crt les are necessary for clients to authenticate you as the valid LDAP
server. If you simply want a server that runs, you can create a self-signed certificate with OpenSSL:

Example 2. Generating an RSA Key
% openssl genrsa -out cert.key 1024
Generating RSA private key, 1024 bit long modulus
....................++++++
...++++++
e is 65537 (0x10001)
% openssl req -new -key cert.key -out cert.csr

At this point you should be prompted for some values. You may enter whatever values you like; however, it is
important the “Common Name” value be the fully qualified domain name of the OpenLDAP server. In our case, and
the examples here, the server is server.example.org. Incorrectly setting this value will cause clients to fail when
making connections. This can the cause of great frustration, so ensure that you follow these steps closely.

Finally, the certificate signing request needs to be signed:

Example 3. Self-signing the Certicate
% openssl x509 -req -in cert.csr -days 365 -signkey cert.key -out cert.crt
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd
Getting Private key

This will create a self-signed certificate that can be used for the directives in slapd.conf , where cert.crt and
cacert.crt are the same le. If you are going to use many OpenLDAP servers (for replication via slurpd) you
will want to see Appendix B, OpenSSL Certificates for LDAP to generate a CA key and use it to sign individual server
certificates.

Once this is done, put the following in /etc/rc.conf :

slapd_enable="YES"

Then run /usr/local/etc/rc.d/slapd start . This should start OpenLDAP. Confirm that it is listening on 389
with

% sockstat -4 -p 389
ldap slapd 3261 7 tcp4 *:389 *:*

3

Entries in the Database

2.1.3. Configuring the Client

Install the net/openldap24-client port for the OpenLDAP libraries. The client machines will always have OpenLDAP
libraries since that is all security/pam_ldap and net/nss_ldap support, at least for the moment.

The configuration le for the OpenLDAP libraries is /usr/local/etc/openldap/ldap.conf . Edit this le to con-
tain the following values:

base dc=example,dc=org
uri ldap://server.example.org/
ssl start_tls
tls_cacert /path/to/your/cacert.crt

Note
It is important that your clients have access to cacert.crt, otherwise they will not be able
to connect.

Note
There are two les called ldap.conf . The rst is this le, which is for the OpenLDAP libraries
and defines how to talk to the server. The second is /usr/local/etc/ldap.conf , and is for
pam_ldap.

At this point you should be able to run ldapsearch -Z on the client machine; -Z means “use TLS”. If you encounter
an error, then something is configured wrong; most likely it is your certificates. Use openssl(1)'s s_client and
s_server to ensure you have them configured and signed properly.

2.2. Entries in the Database

Authentication against an LDAP directory is generally accomplished by attempting to bind to the directory as the
connecting user. This is done by establishing a “simple” bind on the directory with the user name supplied. If there
is an entry with the uid equal to the user name and that entry's userPassword attribute matches the password
supplied, then the bind is successful.

The rst thing we have to do is figure out is where in the directory our users will live.

The base entry for our database is dc=example,dc=org. The default location for users that most clients seem to
expect is something like ou=people,base, so that is what will be used here. However keep in mind that this is
configurable.

So the ldif entry for the people organizational unit will look like:

dn: ou=people,dc=example,dc=org
objectClass: top
objectClass: organizationalUnit
ou: people

All users will be created as subentries of this organizational unit.

Some thought might be given to the object class your users will belong to. Most tools by default will use people,
which is ne if you simply want to provide entries against which to authenticate. However, if you are going to
store user information in the LDAP database as well, you will probably want to use inetOrgPerson, which has many
useful attributes. In either case, the relevant schemas need to be loaded in slapd.conf .

4

http://www.freebsd.org/cgi/url.cgi?ports/net/openldap24-client/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/nss_ldap/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=openssl&sektion=1&manpath=freebsd-release-ports

LDAP Authentication

For this example we will use the person object class. If you are using inetOrgPerson, the steps are basically iden-
tical, except that the sn attribute is required.

To add a user testuser, the ldif would be:

dn: uid=tuser,ou=people,dc=example,dc=org
objectClass: person
objectClass: posixAccount
objectClass: shadowAccount
objectClass: top
uidNumber: 10000
gidNumber: 10000
homeDirectory: /home/tuser
loginShell: /bin/csh
uid: tuser
cn: tuser

I start my LDAP users' UIDs at 10000 to avoid collisions with system accounts; you can configure whatever number
you wish here, as long as it is less than 65536.

We also need group entries. They are as configurable as user entries, but we will use the defaults below:

dn: ou=groups,dc=example,dc=org
objectClass: top
objectClass: organizationalUnit
ou: groups

dn: cn=tuser,ou=groups,dc=example,dc=org
objectClass: posixGroup
objectClass: top
gidNumber: 10000
cn: tuser

To enter these into your database, you can use slapadd or ldapadd on a le containing these entries. Alternatively,
you can use sysutils/ldapvi.

The ldapsearch utility on the client machine should now return these entries. If it does, your database is properly
configured to be used as an LDAP authentication server.

3. Client Configuration
The client should already have OpenLDAP libraries from Section 2.1.3, “Configuring the Client”, but if you are
installing several client machines you will need to install net/openldap24-client on each of them.

FreeBSD requires two ports to be installed to authenticate against an LDAP server, security/pam_ldap and net/
nss_ldap.

3.1. Authentication

security/pam_ldap is configured via /usr/local/etc/ldap.conf .

Note
This is a different le than the OpenLDAP library functions' configuration le, /usr/lo-
cal/etc/openldap/ldap.conf ; however, it takes many of the same options; in fact it is a
superset of that le. For the rest of this section, references to ldap.conf will mean /usr/
local/etc/ldap.conf .

5

http://www.freebsd.org/cgi/url.cgi?ports/sysutils/ldapvi/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/openldap24-client/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/nss_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/net/nss_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr

Authentication

Thus, we will want to copy all of our original configuration parameters from openldap/ldap.conf to the new
ldap.conf . Once this is done, we want to tell security/pam_ldap what to look for on the directory server.

We are identifying our users with the uid attribute. To configure this (though it is the default), set the pam_lo-
gin_attribute directive in ldap.conf :

Example 4. Setting pam_login_attribute
pam_login_attribute uid

With this set, security/pam_ldap will search the entire LDAP directory under base for the value uid=username.
If it nds one and only one entry, it will attempt to bind as that user with the password it was given. If it binds
correctly, then it will allow access. Otherwise it will fail.

Users whose shell is not in /etc/shells will not be able to log in. This is particularly important when Bash is set
as the user shell on the LDAP server. Bash is not included with a default installation of FreeBSD. When installed
from a package or port, it is located at /usr/local/bin/bash . Verify that the path to the shell on the server is
set correctly:

% getent passwd username

There are two choices when the output shows /bin/bash in the last column. The rst is to change the user's entry
on the LDAP server to /usr/local/bin/bash . The second option is to create a symlink on the LDAP client computer
so Bash is found at the correct location:

ln -s /usr/local/bin/bash /bin/bash

Make sure that /etc/shells contains entries for both /usr/local/bin/bash and /bin/bash . The user will then
be able to log in to the system with Bash as their shell.

3.1.1. PAM

PAM, which stands for “Pluggable Authentication Modules”, is the method by which FreeBSD authenticates most
of its sessions. To tell FreeBSD we wish to use an LDAP server, we will have to add a line to the appropriate PAM le.

Most of the time the appropriate PAM le is /etc/pam.d/sshd , if you want to use SSH (remember to set the rele-
vant options in /etc/ssh/sshd_config , otherwise SSH will not use PAM).

To use PAM for authentication, add the line

auth sufficient /usr/local/lib/pam_ldap.so no_warn

Exactly where this line shows up in the le and which options appear in the fourth column determine the exact
behavior of the authentication mechanism; see pam.d(5)

With this configuration you should be able to authenticate a user against an LDAP directory. PAM will perform a
bind with your credentials, and if successful will tell SSH to allow access.

However it is not a good idea to allow every user in the directory into every client machine. With the current con-
figuration, all that a user needs to log into a machine is an LDAP entry. Fortunately there are a few ways to restrict
user access.

ldap.conf supports a pam_groupdn directive; every account that connects to this machine needs to be a member
of the group specified here. For example, if you have

pam_groupdn cn=servername,ou=accessgroups,dc=example,dc=org

6

http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=pam.d&sektion=5&manpath=freebsd-release-ports

LDAP Authentication

in ldap.conf , then only members of that group will be able to log in. There are a few things to bear in mind,
however.

Members of this group are specified in one or more memberUid attributes, and each attribute must have the full
distinguished name of the member. So memberUid: someuser will not work; it must be:

memberUid: uid=someuser,ou=people,dc=example,dc=org

Additionally, this directive is not checked in PAM during authentication, it is checked during account management,
so you will need a second line in your PAM les under account. This will require, in turn, every user to be listed in
the group, which is not necessarily what we want. To avoid blocking users that are not in LDAP, you should enable
the ignore_unknown_user attribute. Finally, you should set the ignore_authinfo_unavail option so that you are
not locked out of every computer when the LDAP server is unavailable.

Your pam.d/sshd might then end up looking like this:

Example 5. Sample pam.d/sshd
auth required pam_nologin.so no_warn
auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
auth sufficient /usr/local/lib/pam_ldap.so no_warn
auth required pam_unix.so no_warn try_first_pass

account required pam_login_access.so
account required /usr/local/lib/pam_ldap.so no_warn ↺
ignore_authinfo_unavail ignore_unknown_user

Note
Since we are adding these lines specifically to pam.d/sshd , this will only have an effect on
SSH sessions. LDAP users will be unable to log in at the console. To change this behavior,
examine the other les in /etc/pam.d and modify them accordingly.

3.2. Name Service Switch

NSS is the service that maps attributes to names. So, for example, if a le is owned by user 1001, an application
will query NSS for the name of 1001, and it might get bob or ted or whatever the user's name is.

Now that our user information is kept in LDAP, we need to tell NSS to look there when queried.

The net/nss_ldap port does this. It uses the same configuration le as security/pam_ldap, and should not need any
extra parameters once it is installed. Instead, what is left is simply to edit /etc/nsswitch.conf to take advantage
of the directory. Simply replace the following lines:

group: compat
passwd: compat

with

group: files ldap
passwd: files ldap

This will allow you to map usernames to UIDs and UIDs to usernames.

7

http://www.freebsd.org/cgi/url.cgi?ports/net/nss_ldap/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/pam_ldap/pkg-descr

Caveats

Congratulations! You should now have working LDAP authentication.

3.3. Caveats

Unfortunately, as of the time this was written FreeBSD did not support changing user passwords with passwd(1).
Because of this, most administrators are left to implement a solution themselves. I provide some examples here.
Note that if you write your own password change script, there are some security issues you should be made aware
of; see Section 4.3, “Password Storage”

Example 6. Shell Script for Changing Passwords
#!/bin/sh

stty -echo
read -p "Old Password: " oldp; echo
read -p "New Password: " np1; echo
read -p "Retype New Password: " np2; echo
stty echo

if ["$np1" != "$np2"]; then
 echo "Passwords do not match."
 exit 1
fi

ldappasswd -D uid="$USER",ou=people,dc=example,dc=org \
 -w "$oldp" \
 -a "$oldp" \
 -s "$np1"

Caution
This script does hardly any error checking, but more important it is very cavalier about
how it stores your passwords. If you do anything like this, at least adjust the security.bs-
d.see_other_uids sysctl value:

sysctl security.bsd.see_other_uids=0

A more flexible (and probably more secure) approach can be used by writing a custom program, or even a web
interface. The following is part of a Ruby library that can change LDAP passwords. It sees use both on the command
line, and on the web.

Example 7. Ruby Script for Changing Passwords
require 'ldap'
require 'base64'
require 'digest'
require 'password' # ruby-password

ldap_server = "ldap.example.org"
luser = "uid=#{ENV['USER']},ou=people,dc=example,dc=org"

get the new password, check it, and create a salted hash from it
def get_password

8

http://www.FreeBSD.org/cgi/man.cgi?query=passwd&sektion=1&manpath=freebsd-release-ports

LDAP Authentication

 pwd1 = Password.get("New Password: ")
 pwd2 = Password.get("Retype New Password: ")

 raise if pwd1 != pwd2
 pwd1.check # check password strength

 salt = rand.to_s.gsub(/0\./, '')
 pass = pwd1.to_s
 hash = "{SSHA}"+Base64.encode64(Digest::SHA1.digest("#{pass}#{salt}")+salt).↺
chomp!
 return hash
end

oldp = Password.get("Old Password: ")
newp = get_password

We'll just replace it. That we can bind proves that we either know
the old password or are an admin.

replace = LDAP::Mod.new(LDAP::LDAP_MOD_REPLACE | LDAP::LDAP_MOD_BVALUES,
 "userPassword",
 [newp])

conn = LDAP::SSLConn.new(ldap_server, 389, true)
conn.set_option(LDAP::LDAP_OPT_PROTOCOL_VERSION, 3)
conn.bind(luser, oldp)
conn.modify(luser, [replace])

Although not guaranteed to be free of security holes (the password is kept in memory, for example) this is cleaner
and more flexible than a simple sh script.

4. Security Considerations
Now that your machines (and possibly other services) are authenticating against your LDAP server, this server
needs to be protected at least as well as /etc/master.passwd would be on a regular server, and possibly even more
so since a broken or cracked LDAP server would break every client service.

Remember, this section is not exhaustive. You should continually review your configuration and procedures for
improvements.

4.1. Setting Attributes Read-only

Several attributes in LDAP should be read-only. If left writable by the user, for example, a user could change his
uidNumber attribute to 0 and get root access!

To begin with, the userPassword attribute should not be world-readable. By default, anyone who can connect to
the LDAP server can read this attribute. To disable this, put the following in slapd.conf :

Example 8. Hide Passwords
access to dn.subtree="ou=people,dc=example,dc=org"
 attrs=userPassword
 by self write
 by anonymous auth
 by * none

access to *

9

root Account Definition

 by self write
 by * read

This will disallow reading of the userPassword attribute, while still allowing users to change their own passwords.

Additionally, you'll want to keep users from changing some of their own attributes. By default, users can change
any attribute (except for those which the LDAP schemas themselves deny changes), such as uidNumber. To close
this hole, modify the above to

Example 9. Read-only Attributes
access to dn.subtree="ou=people,dc=example,dc=org"
 attrs=userPassword
 by self write
 by anonymous auth
 by * none

access to attrs=homeDirectory,uidNumber,gidNumber
 by * read

access to *
 by self write
 by * read

This will stop users from being able to masquerade as other users.

4.2. root Account Definition

Often the root or manager account for the LDAP service will be defined in the configuration le. OpenLDAP sup-
ports this, for example, and it works, but it can lead to trouble if slapd.conf is compromised. It may be better to
use this only to bootstrap yourself into LDAP, and then define a root account there.

Even better is to define accounts that have limited permissions, and omit a root account entirely. For example,
users that can add or remove user accounts are added to one group, but they cannot themselves change the mem-
bership of this group. Such a security policy would help mitigate the effects of a leaked password.

4.2.1. Creating a Management Group

Say you want your IT department to be able to change home directories for users, but you do not want all of them
to be able to add or remove users. The way to do this is to add a group for these admins:

Example 10. Creating a Management Group
dn: cn=homemanagement,dc=example,dc=org
objectClass: top
objectClass: posixGroup
cn: homemanagement
gidNumber: 121 # required for posixGroup
memberUid: uid=tuser,ou=people,dc=example,dc=org
memberUid: uid=user2,ou=people,dc=example,dc=org

10

LDAP Authentication

And then change the permissions attributes in slapd.conf :

Example 11. ACLs for a Home Directory Management Group
access to dn.subtree="ou=people,dc=example,dc=org"
 attr=homeDirectory
 by dn="cn=homemanagement,dc=example,dc=org"
 dnattr=memberUid write

Now tuser and user2 can change other users' home directories.

In this example we have given a subset of administrative power to certain users without giving them power in
other domains. The idea is that soon no single user account has the power of a root account, but every power root
had is had by at least one user. The root account then becomes unnecessary and can be removed.

4.3. Password Storage

By default OpenLDAP will store the value of the userPassword attribute as it stores any other data: in the clear.
Most of the time it is base 64 encoded, which provides enough protection to keep an honest administrator from
knowing your password, but little else.

It is a good idea, then, to store passwords in a more secure format, such as SSHA (salted SHA). This is done by
whatever program you use to change users' passwords.

A. Useful Aids

There are a few other programs that might be useful, particularly if you have many users and do not want to
configure everything manually.

security/pam_mkhomedir is a PAM module that always succeeds; its purpose is to create home directories for users
which do not have them. If you have dozens of client servers and hundreds of users, it is much easier to use this
and set up skeleton directories than to prepare every home directory.

sysutils/cpu is a pw(8)-like utility that can be used to manage users in the LDAP directory. You can call it directly,
or wrap scripts around it. It can handle both TLS (with the -x ag) and SSL (directly).

sysutils/ldapvi is a great utility for editing LDAP values in an LDIF-like syntax. The directory (or subsection of the
directory) is presented in the editor chosen by the EDITOR environment variable. This makes it easy to enable large-
scale changes in the directory without having to write a custom tool.

security/openssh-portable has the ability to contact an LDAP server to verify SSH keys. This is extremely nice if
you have many servers and do not want to copy your public keys across all of them.

B. OpenSSL Certificates for LDAP

If you are hosting two or more LDAP servers, you will probably not want to use self-signed certificates, since each
client will have to be configured to work with each certificate. While this is possible, it is not nearly as simple as
creating your own certificate authority, and signing your servers' certificates with that.

The steps here are presented as they are with very little attempt at explaining what is going on—further explana-
tion can be found in openssl(1) and its friends.

To create a certificate authority, we simply need a self-signed certificate and key. The steps for this again are

11

http://www.freebsd.org/cgi/url.cgi?ports/security/pam_mkhomedir/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/sysutils/cpu/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=pw&sektion=8&manpath=freebsd-release-ports
http://www.freebsd.org/cgi/url.cgi?ports/sysutils/ldapvi/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/security/openssh-portable/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=openssl&sektion=1&manpath=freebsd-release-ports

OpenSSL Certificates for LDAP

Example B.1. Creating a Certicate
% openssl genrsa -out root.key 1024
% openssl req -new -key root.key -out root.csr
% openssl x509 -req -days 1024 -in root.csr -signkey root.key -out root.crt

These will be your root CA key and certificate. You will probably want to encrypt the key and store it in a cool, dry
place; anyone with access to it can masquerade as one of your LDAP servers.

Next, using the rst two steps above create a key ldap-server-one.key and certificate signing request ldap-
server-one.csr. Once you sign the signing request with root.key , you will be able to use ldap-server-one.*
on your LDAP servers.

Note

Do not forget to use the fully qualified domain name for the “common name” attribute when
generating the certificate signing request; otherwise clients will reject a connection with
you, and it can be very tricky to diagnose.

To sign the key, use -CA and -CAkey instead of -signkey :

Example B.2. Signing as a Certicate Authority
% openssl x509 -req -days 1024 \
-in ldap-server-one.csr -CA root.crt -CAkey root.key \
-out ldap-server-one.crt

The resulting le will be the certificate that you can use on your LDAP servers.

Finally, for clients to trust all your servers, distribute root.crt (the certificate, not the key!) to each client, and
specify it in the TLSCACertificateFile directive in ldap.conf .

12

	LDAP Authentication
	Table of Contents
	1. Preface
	2. Configuring LDAP
	2.1. Setting Up the Server for Connections
	2.1.1. Installing OpenLDAP
	2.1.2. Configuring OpenLDAP
	2.1.3. Configuring the Client

	2.2. Entries in the Database

	3. Client Configuration
	3.1. Authentication
	3.1.1. PAM

	3.2. Name Service Switch
	3.3. Caveats

	4. Security Considerations
	4.1. Setting Attributes Read-only
	4.2. root Account Definition
	4.2.1. Creating a Management Group

	4.3. Password Storage

	A. Useful Aids
	B. OpenSSL Certificates for LDAP

